Questões de Estatística do ano 2009

Pesquise questões de concurso nos filtros abaixo

Listagem de Questões de Estatística do ano 2009

Um fabricante faz dois tipos de lâmpadas. Seja X a variável aleatória que representa o tempo de vida do primeiro tipo e Y a variável aleatória que representa o tempo de vida do segundo tipo. Sabe-se que X e Y são independentes e que os respectivos desvios padrões populacionais dos dois tipos são iguais a 250 horas, cada um. Um comprador testou 36 lâmpadas do tipo X e 64 lâmpadas do tipo Y, obtendo 1.000 horas e 1.200 horas de duração média para o tipo X e o tipo Y, respectivamente. Foram formuladas as seguintes hipóteses: H0: μx = μy (hipóteses nula, isto é, a vida média dos tipos X e Y é a mesma) e H1: μx ≠ μy (hipótese alternativa). Considerou-se para o teste que o tamanho das populações é infinito, além de serem normalmente distribuídas e que na distribuição normal padrão (Z) a probabilidade P (Z ≥ zα) = α (0 < α 0,5). Então, pode-se afirmar que a um nível de significância de 2 α

Os lucros brutos anuais das empresas de um determinado ramo de atividade apresentam uma distribuição normal com média μ e variância populacional σ2 desconhecidas. A partir de uma amostra aleatória de tamanho 25 da população considerada de tamanho infinito, deseja-se testar a hipótese H0: μ = 20 milhões de reais contra a alternativa H1: μ > 20 milhões de reais, com a realização do teste t de Student. A média e o desvio padrão da amostra são iguais a 23 e 8, respectivamente, em milhões de reais. Seja tc o valor calculado correspondente para comparar com o valor tabelado tt da distribuição t de Student, com n graus de liberdade, ao nível de significância α. Então, é correto afirmar que

Com o objetivo de comprovar se dois grupos independentes diferem em tendências centrais, um analista utiliza a tabela abaixo formulando as hipóteses:

H0: Os 2 grupos provêm de populações com a mesma mediana (hipótese nula).

H1: A mediana de um grupo difere da mediana do outro grupo (hipótese alternativa).

Então, é correto afirmar que

Considere um teste estatístico envolvendo uma população normalmente distribuída em que se deseja testar, com relação a um parâmetro da distribuição, a hipótese nula (H0) contra a hipótese alternativa (H1), ao nível de significância α. Seja β a probabilidade de aceitar H0 quando H0 for falsa. Então,

Uma experiência consiste em verificar se uma moeda é honesta. Em 10 lançamentos da moeda, decide-se pela honestidade da moeda se o número de caras (n) for tal que 4 ≤ n ≤ 6 . A probabilidade de rejeitar a hipótese da moeda ser honesta, quando ela for correta é

Navegue em mais matérias e assuntos

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Estude Grátis