Questões de Estatística da CESPE / CEBRASPE

Pesquise questões de concurso nos filtros abaixo

Listagem de Questões de Estatística da CESPE / CEBRASPE

#Questão 1091318 - Estatística, Inferência estatística, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

        Uma população de variáveis aleatórias independentes e identicamente distribuídas segue a distribuição de Bernoulli Xi ~ Ber(θ), sendo P(Xi = 1) = θ e P(Xi = 0) = 1 − θ. Uma amostra de tamanho n será retirada dessa população. A distribuição amostral da estatística suficiente, S, para θ é a binomial (n, θ), e S é a soma de X na amostra. O estimador de máxima verossimilhança para θ é θMV= S/n . A esse respeito, três analistas, A, B e C, resolveram usar, respectivamente:

• θ = 0,5 na distribuição amostral, a fim construir um intervalo de confiança bilateral para θ ao nível de confiança 0,95;

• θ = S/n na distribuição amostral, a fim construir um intervalo de confiança bilateral para θ ao nível de confiança 0,95;

• uma distribuição, a priori, uniforme no intervalo [0, 1] , a fim de construir um intervalo de credibilidade de 95% após observar a amostra. 

A partir dessas informações, e considerando que para θ = 0,5: P(S ≤ 1) = 0,011; P(S ≤ 2) = 0,055; P(S ≤ 7) = 0,945, e P(S ≤ 8) = 0,989; e para θ = 0,7: P(S > 7) = 0,383, e P(S > 8) = 0,149, julgue o item a seguir.


Sob a hipótese nula de θ = 0,5 contra a hipótese alternativa de θ > 0,5, o correspondente intervalo de confiança unilateral ao nível de confiança de 94,5% é [0; S+2/n].

#Questão 1091328 - Estatística, Calculo de probabilidades, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

A respeito de amostras e distribuição de probabilidade, julgue o item subsequente.


Para uma população de tamanho N = 200, o tamanho mínimo de uma amostra aleatória simples para se admitir, com 95% de probabilidade, que os erros amostrais não ultrapassem 4% será de n = 152.

#Questão 1091319 - Estatística, Inferência estatística, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

        Uma população de variáveis aleatórias independentes e identicamente distribuídas segue a distribuição de Bernoulli Xi ~ Ber(θ), sendo P(Xi = 1) = θ e P(Xi = 0) = 1 − θ. Uma amostra de tamanho n será retirada dessa população. A distribuição amostral da estatística suficiente, S, para θ é a binomial (n, θ), e S é a soma de X na amostra. O estimador de máxima verossimilhança para θ é θMV= S/n . A esse respeito, três analistas, A, B e C, resolveram usar, respectivamente:

• θ = 0,5 na distribuição amostral, a fim construir um intervalo de confiança bilateral para θ ao nível de confiança 0,95;

• θ = S/n na distribuição amostral, a fim construir um intervalo de confiança bilateral para θ ao nível de confiança 0,95;

• uma distribuição, a priori, uniforme no intervalo [0, 1] , a fim de construir um intervalo de credibilidade de 95% após observar a amostra. 

A partir dessas informações, e considerando que para θ = 0,5: P(S ≤ 1) = 0,011; P(S ≤ 2) = 0,055; P(S ≤ 7) = 0,945, e P(S ≤ 8) = 0,989; e para θ = 0,7: P(S > 7) = 0,383, e P(S > 8) = 0,149, julgue o item a seguir.


O intervalo de credibilidade do analista C contém o verdadeiro valor do parâmetro populacional, com probabilidade 0,95.

#Questão 1091329 - Estatística, Inferência estatística, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

A respeito de amostras e distribuição de probabilidade, julgue o item subsequente.


A distribuição t de Student é utilizada para inferências estatísticas, quando se tem amostras com tamanhos inferiores a 30 elementos. 

#Questão 1091320 - Estatística, Inferência estatística, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

        Uma população de variáveis aleatórias independentes e identicamente distribuídas segue a distribuição de Bernoulli Xi ~ Ber(θ), sendo P(Xi = 1) = θ e P(Xi = 0) = 1 − θ. Uma amostra de tamanho n será retirada dessa população. A distribuição amostral da estatística suficiente, S, para θ é a binomial (n, θ), e S é a soma de X na amostra. O estimador de máxima verossimilhança para θ é θMV= S/n . A esse respeito, três analistas, A, B e C, resolveram usar, respectivamente:

• θ = 0,5 na distribuição amostral, a fim construir um intervalo de confiança bilateral para θ ao nível de confiança 0,95;

• θ = S/n na distribuição amostral, a fim construir um intervalo de confiança bilateral para θ ao nível de confiança 0,95;

• uma distribuição, a priori, uniforme no intervalo [0, 1] , a fim de construir um intervalo de credibilidade de 95% após observar a amostra. 

A partir dessas informações, e considerando que para θ = 0,5: P(S ≤ 1) = 0,011; P(S ≤ 2) = 0,055; P(S ≤ 7) = 0,945, e P(S ≤ 8) = 0,989; e para θ = 0,7: P(S > 7) = 0,383, e P(S > 8) = 0,149, julgue o item a seguir.


Se o verdadeiro valor do parâmetro populacional θ é igual a 0,5, em m amostras aleatórias de tamanho n com m → ∞, a fração de vezes em que o intervalo de confiança do analista B conterá 0,5 será maior ou igual a 0,95.

Navegue em mais matérias e assuntos

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Estude Grátis