Questões de Estatística do ano 2025

Pesquise questões de concurso nos filtros abaixo

Listagem de Questões de Estatística do ano 2025

#Questão 1091309 - Estatística, Amostragem, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

Julgue o item a seguir, em relação às técnicas de amostragem. 


A amostragem sistemática envolve a partição da população em grupos internamente homogêneos de igual tamanho, para evitar viés na estimativa dos parâmetros populacionais.

#Questão 1091310 - Estatística, Inferência estatística, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística


Q tem 4 categorias.

#Questão 1091311 - Estatística, Inferência estatística, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística



Ao nível de significância de 5%, rejeitando-se a hipótese nula que β2 = 0, β3 = 0, β4 = 0 e β5 = 0 contra a alternativa de β2 ≠ 0 e(ou) β3 ≠ 0 e(ou) β4 ≠ 0 e(ou) β5 ≠ 0, usando um teste F com 4 graus de liberdade no numerador e n -  10 graus de liberdade no denominador e a estatística
Imagem associada para resolução da questão , é correto afirmar que Q é estatisticamente significante ao nível de significância de 5%.

#Questão 1091312 - Estatística, Modelos lineares, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

        Um modelo de regressão linear simples é especificado como Yi = a + Xi ∙ β + εi, em que Ei ] = 0 e Var[εi ] = δ2. Para estimadores a'   e β' , o valor predito para observação i (Y'i) com característica Xi é dado por Y'i = a' + Xi ∙ β' . O resíduo para observação i ( εi ) é definido como εi = Yi − Y'i . De uma amostra aleatória de tamanho 49, coletada da população desse modelo de regressão linear simples, obteve-se:

• ∑iYi − Y'i)2 = 17.173 e

• ∑iY'i - my)2) = 36.464,

em que my é a média amostral de Y.

Em relação às informações precedentes, julgue o próximo item, considerando que o percentil 95% de uma distribuição F, com 1 grau de liberdade no numerador e 47 graus de liberdade no denominador, é igual a 4,05, e que o percentil 95% de uma distribuição qui-quadrado com 47 graus de liberdade é 64.


i (Yi - my)2 = 53.637.

#Questão 1091313 - Estatística, Modelos lineares, CESPE / CEBRASPE, 2025, TRF - 6ª REGIÃO, Analista Judiciário - Área Apoio Especializado - Especialidade Estatística

        Um modelo de regressão linear simples é especificado como Yi = a + Xi ∙ β + εi, em que Ei ] = 0 e Var[εi ] = δ2. Para estimadores a'   e β' , o valor predito para observação i (Y'i) com característica Xi é dado por Y'i = a' + Xi ∙ β' . O resíduo para observação i ( εi ) é definido como εi = Yi − Y'i . De uma amostra aleatória de tamanho 49, coletada da população desse modelo de regressão linear simples, obteve-se:

• ∑iYi − Y'i)2 = 17.173 e

• ∑iY'i - my)2) = 36.464,

em que my é a média amostral de Y.

Em relação às informações precedentes, julgue o próximo item, considerando que o percentil 95% de uma distribuição F, com 1 grau de liberdade no numerador e 47 graus de liberdade no denominador, é igual a 4,05, e que o percentil 95% de uma distribuição qui-quadrado com 47 graus de liberdade é 64.


Se a correlação amostral entre os resíduos, ε'i , e Xi é igual a zero, isso indica que o modelo está bem especificado.

Navegue em mais matérias e assuntos

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Estude Grátis