Questões de Engenharia Naval do ano 2022

Pesquise questões de concurso nos filtros abaixo

Listagem de Questões de Engenharia Naval do ano 2022

O momento de inércia mede a resistência à flexão da seção de viga em relação a eixo que passa pelo seu centro de gravidade. Quanto maior for o valor do momento de inércia da seção, mais resistente será a viga para suportar as forças externas. O módulo de resistência à flexão é a relação entre o momento de inércia da seção em relação a um eixo e a distância do ponto mais afastado da seção àquele eixo. A respeito dessa temática, julgue o item subsequente.



Se a seção caixão (ou retangular oca) representa adequadamente o casco da embarcação, quanto maior for a altura da seção (equivalente ao pontal), mais resistente será o casco, e quanto maior for a boca da embarcação, mais estável ela será em relação ao emborcamento. Assim, para conferir maior estabilidade, as embarcações que transportam granéis e contenedores devem ser construídas mantendo-se a relação entre boca e calado igual a sete. 

O momento de inércia mede a resistência à flexão da seção de viga em relação a eixo que passa pelo seu centro de gravidade. Quanto maior for o valor do momento de inércia da seção, mais resistente será a viga para suportar as forças externas. O módulo de resistência à flexão é a relação entre o momento de inércia da seção em relação a um eixo e a distância do ponto mais afastado da seção àquele eixo. A respeito dessa temática, julgue o item subsequente.




O módulo de resistência — definido, para a seção caixão (ou retangular oca), pela relação W = I/(p/2) = (bp- bmpm 3 )/6p, em que b é a boca, p é o pontal, bm é a boca moldada e pm é o pontal moldado — é útil em pré-dimensionamentos de seções simples por representar a capacidade de resistência da viga e requerer cálculos mais simples, mas, para a seção caixão, essa vantagem aparentemente inexiste.

A partir dessas informações, julgue o próximo item acerca de flexão pura em vigas, tensão de cisalhamento e deflexão de viga.  



Quando a embarcação navega em mar e recebe ondas cujas ortogonais às cristas estão alinhadas com o seu eixo longitudinal, a deflexão a meio navio será determinada por valor proporcional a d = (5qL4 )/(384EI), desde que haja uma crista à proa e outra crista à popa, e o casco fique apoiado majoritariamente sobre essas duas cristas, o carregamento da embarcação possa ser representado por carga (q) uniformemente distribuída ao longo do casco, o comprimento da onda seja de (L) metros e se iguale ao comprimento da embarcação, E seja o módulo de elasticidade e I seja o momento de inércia de uma seção caixão (ou retangular oca) de eixo vertical maior que o eixo horizontal, o momento de inércia da seção seja calculado por I = (bp3 – bmpm 3 )/12, em que (b) é a boca, (p) é o pontal, (bm) é a boca moldada e (pm) é o pontal moldado. Com essa abordagem, admite-se que o movimento predominante dessa embarcação seja o caturro. 

Em regra, a embarcação, em flutuação, tem seis possíveis movimentos: três deslocamentos e três rotações em relação aos três eixos que permitem a determinação de um ponto no espaço. Por ordem decrescente de interferência sobre a estabilidade e a manobrabilidade da embarcação, citam-se: o balanço (roll), caracterizado pelo giro da embarcação em torno do seu eixo longitudinal, o caturro (pitch), caracterizado pelo giro em torno do eixo transversal, e o cabeceio (yaw), caracterizado pelo giro em torno do eixo perpendicular ao plano de flutuação. Para o estudo dos esforços que ocorrem sobre o casco das embarcações, é estabelecida uma correlação entre essa estrutura flutuante e a viga estrutural submetida a esforços típicos da estabilidade de obras civis. 


A partir dessas informações, julgue o próximo item acerca de flexão pura em vigas, tensão de cisalhamento e deflexão de viga.  



Quando a embarcação navega em mar e recebe ondas altas cujas ortogonais às cristas fazem ângulo com seu eixo longitudinal, o esforço cortante que se manifesta a 1/3 do comprimento do casco, a contar da proa, será determinado por valor proporcional a qL/3, desde que haja uma crista a 1/3 do comprimento da embarcação, próximo à proa, e outra crista à popa, ficando o casco apoiado majoritariamente sobre essas duas cristas, o carregamento da embarcação possa ser representado por carga (q) uniformemente distribuída ao longo do casco e o comprimento da onda seja de (2L/3) metros, com o terço frontal do casco funcionando como balanço, já que esse comprimento se projeta sobre a cava entre cristas a barlamar. Com essa abordagem, admite-se que os movimentos predominantes da embarcação sejam o caturro e o balanço, e que o casco, nessas condições, esteja submetido a forças cisalhantes que podem ser combatidas por anteparas e cavername. 

Em regra, a embarcação, em flutuação, tem seis possíveis movimentos: três deslocamentos e três rotações em relação aos três eixos que permitem a determinação de um ponto no espaço. Por ordem decrescente de interferência sobre a estabilidade e a manobrabilidade da embarcação, citam-se: o balanço (roll), caracterizado pelo giro da embarcação em torno do seu eixo longitudinal, o caturro (pitch), caracterizado pelo giro em torno do eixo transversal, e o cabeceio (yaw), caracterizado pelo giro em torno do eixo perpendicular ao plano de flutuação. Para o estudo dos esforços que ocorrem sobre o casco das embarcações, é estabelecida uma correlação entre essa estrutura flutuante e a viga estrutural submetida a esforços típicos da estabilidade de obras civis. 


A partir dessas informações, julgue o próximo item acerca de flexão pura em vigas, tensão de cisalhamento e deflexão de viga.  



Quando a embarcação navega em mar e recebe ondas cujas ortogonais às cristas estão alinhadas com o seu eixo longitudinal, o momento fletor a meio navio será determinado por valor proporcional a qL2 /8, desde que haja uma crista à proa e outra crista à popa e o casco fique apoiado majoritariamente sobre essas duas cristas, o carregamento da embarcação possa ser representado por carga (q) uniformemente distribuída ao longo do casco e o comprimento da onda seja de (L) metros e igual ao comprimento da embarcação. Com essa abordagem, admite-se que o movimento predominante dessa embarcação seja o caturro, e que o casco esteja submetido a flexão composta reta. 

Navegue em mais matérias e assuntos

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Estude Grátis