

Concurso Público Federal Edital 38/2018

PROVA

Matemática

QUESTÕES OBJETIVAS Legislação 01 a 10 Conhecimentos Específicos 11 a 40

Nome do candidato:	Nº de Inscricão:
Nome do Candidato.	in de inscrição.

INSTRUÇÕES

- 1) Verifique se este caderno corresponde à sua opção de cargo e se contém 40 questões, numeradas de 1 a 40. Caso contrário, solicite ao fiscal da sala outro caderno. Não serão aceitas reclamações posteriores.
- 2) A prova é composta por 40 questões objetivas, de múltipla escolha, sendo apenas uma resposta a correta.
- 3) O tempo de duração da prova é de 3h30min(três horas e trinta minutos).
- 4) Não é permitida consulta a qualquer material e os candidatos não poderão conversar entre si, nem manter contato de espécie alguma.
- 5) Os telefones celulares e similares não podem ser manipulados e devem permanecer desligados durante o período em que o candidato se encontrar na sala, e devem permanecer em local designado pelo fiscal. Os pertences não utilizados para a prova deverão estar embaixo da carteira, ficando automaticamente excluído o candidato que descumprir essas orientações.
- 6) O candidato só poderá deixar o local após 90min (noventa minutos) do início da prova, exceto os três últimos candidatos, os quais só poderão deixar o local quando todos terminarem a prova.

- 7) O candidato poderá levar consigo o caderno de provas após decorridos 120min (cento e vinte minutos) do início da prova. Não será oferecido outro momento para a retirada do mesmo.
- 8) É proibido fazer anotação de informações relativas às suas respostas no comprovante de inscrição ou em qualquer outro meio, que não os permitidos, assim como recusar-se a entregar o material da prova ao término do tempo destinado para a sua realização.
- 9) O candidato deverá preencher a caneta a Folha de Respostas, preenchendo totalmente a célula correspondente à alternativa escolhida, sendo desconsiderada a resposta se não for atendido o referido critério de preenchimento. O candidato deverá responder a todas as questões. Os rascunhos não serão considerados em nenhuma hipótese.
- 10) Não haverá substituição da Folha de Respostas em caso de erro do candidato.
- 11) É proibida a divulgação ou impressão parcial ou total da presente prova. Direitos Reservados.

LEGISLAÇÃO

- 1. Luiz Antonio é Doutor em Filosofia e Professor do quadro de pessoal ativo permanente do IFRS, posicionado na Classe D III da Carreira do Magistério do Ensino Básico, Técnico e Tecnológico, contando com 6 (seis) anos de efetivo exercício na Instituição. A par das informações, com base na Lei de criação dos Institutos Federais nº 11.892/2008, assinale a alternativa CORRETA:
- a) Considerando que ainda não alcançou a Classe DIV da Carreira do Magistério do Ensino Básico, Técnico e Tecnológico, Luiz Antonio não está apto a candidatar-se ao cargo de Reitor.
- b) Luiz Antonio preenche o(s) requisito(s) legal(is) para candidatar-se ao cargo de Reitor do IFRS.
- c) Luiz Antonio não poderá candidatar-se ao cargo em razão de ainda não ter alcançado a Classe DV da Carreira do Magistério do Ensino Básico, Técnico e Tecnológico.
- d) Muito embora atenda aos requisitos de titulação e posicionamento na carreira, Luiz Antonio ainda não possui o tempo mínimo de efetivo exercício necessário à candidatura.
- e) Para candidatar-se ao cargo de Reitor, Luiz Antonio deverá atender cumulativamente a dois requisitos: possuir o título de Doutor e estar posicionado na Classe DIV da Carreira do Magistério do Ensino Básico, Técnico e Tecnológico.

- 2. Tendo como base a Lei nº 8.112, de 11 de dezembro de 1990, que dispõe sobre o regime jurídico dos servidores públicos civis da União, das autarquias e fundações públicas federais, analise as afirmações abaixo, assinalando, a seguir a alternativa CORRETA:
 - () Servidor lotado e em exercício no *Campus* Rio Grande do IFRS pretende, por diversas razões, passar a ser lotado e ter exercício no *Campus* Caxias do Sul, também do IFRS. Deverá, então, requerer a sua remoção.
 - () Servidor lotado e em exercício no *Campus* Sertão do IFRS pretende, por diversas razões, passar a ser lotado e ter exercício no *Campus* Taguatinga do Instituto Federal Brasília. Deverá, nessa situação, requerer a sua redistribuição.
 - () Determinada servidora do *Campus* Ibirubá do IFRS foi nomeada para exercer Cargo de Direção na Reitoria do IFRS. Assim, fará jus ao pagamento de ajuda de custo, que será paga mensalmente enquanto não retornar à sua Unidade de origem.
 - () Caso um servidor trabalhe em horário considerado pela lei como noturno, terá direito ao pagamento do respectivo adicional, correspondente a 20% (vinte por cento) sobre o valor-hora.
 - () Caso um servidor do IFRS venha desempenhar mandato eletivo municipal nas próximas eleições, seu afastamento do cargo na autarquia será considerado como efetivo exercício.
- a) F-F-F-V-V.
- b) V-F-V-F-F.
- c) V-V-V-F-F.
- d) V V F F V.
- e) F-V-F-V-V.

- 3. Renato, professor contratado temporariamente pelo IFRS, retirou de sua repartição, sem autorização, um notebook e diversos livros, para utilizar em outra instituição de ensino onde ministra aulas. Analisando tal conduta à luz do Código de Ética do Servidor Público Federal, considere as assertivas a seguir:
 - I. Tendo em vista Renato não ostentar a condição de servidor público em razão de possuir contrato temporário com a Administração, não estará sujeito às disposições do Código de Ética.
 - Renato praticou conduta antiética ao retirar os bens da repartição pública sem autorização legal.
 - III. A conduta praticada por Renato é punível com a penalidade de suspensão, com possibilidade de conversão em multa, quando houver conveniência para o serviço.
- IV. A pena aplicável à Renato pela Comissão de Ética é a de censura.

Assinale a alternativa que contém a(s) afirmativa(s) **CORRETA(S)**:

- a) Apenas I.
- b) Apenas II.
- c) Apenas III.
- d) Apenas II e IV.
- e) Apenas II, III.

- 4. Em relação ao benefício de pensão por morte, previsto na Lei nº 8.112, de 11 de dezembro de 1990, analise as afirmativas abaixo.
 - Tícia era divorciada de um Servidor Público Federal e dele recebia pensão alimentícia fixada judicialmente. Com o falecimento desse Servidor, Tícia será considerada como beneficiária da pensão por morte.
 - II. Determinado Servidor Público Federal faleceu em janeiro de 2018. Seu filho, que, na data do óbito tinha 10 (dez) anos de idade e não é inválido, não tem deficiência grave e não tem deficiência intelectual ou mental, receberá pensão por morte até os 24 (vinte e quatro) anos de idade.
- III. Mévio era Servidor Público Federal há dez anos e, nas suas férias, em março de 2018, veio a falecer. Mévio estava casado há um ano e tinha 40 (quarenta) anos de idade. Assim, a viúva, que, na data do óbito do marido também tinha 40 (quarenta) anos de idade, terá direito a receber a pensão por morte vitalícia.
- IV. Determinada Servidora Pública Federal convivia em união estável, devidamente registrada, tinha dois filhos menores de idade, e, ainda, sustentava seus pais, ambos com 80 (oitenta) anos de idade. Tendo ocorrido o falecimento dessa servidora, os pais, embora dependentes economicamente da filha, não terão direito ao benefício de pensão por morte.
- V. Havendo o falecimento de um servidor público federal, os beneficiários terão o prazo de até 5 (cinco) anos, contado da data do óbito, para requerer a concessão de pensão por morte, sob pena de perda desse direito.

Assinale a alternativa que contém as afirmativas **CORRETAS**:

- a) Apenas I e IV.
- b) Apenas III e IV.
- c) Apenas I, II e IV.
- d) Apenas I, III e V.
- e) Apenas II, III e V.

- 5. Considerando as disposições contidas no Estatuto do IFRS sobre o Conselho Superior, assinale a alternativa que apresenta a afirmação CORRETA:
- a) Os Pró-reitores fazem parte da composição do Conselho Superior.
- b) Os mandatos dos membros do Conselho terão duração de 3 (anos) anos, permitida uma recondução para o período imediatamente subsequente.
- c) Os membros que compõe o Conselho na condição de representantes da sociedade civil serão designados por ato do Reitor.
- d) O Conselho Superior não possui competência legal para deliberar sobre taxas, emolumentos e contribuições por prestação de serviços em geral a serem cobrados pelo IFRS.
- e) Dentre as competências atribuídas pelo Estatuto ao Conselho Superior está a de autorizar a criação, alteração curricular e extinção de cursos no âmbito do Instituto Federal, bem como o registro de diplomas.
- 6. Com base na Lei nº 9.784, de 29 de janeiro de 1999, que regula o processo administrativo no âmbito da Administração Pública Federal, assinale abaixo a alternativa CORRETA:
- a) Considera-se entidade a unidade de atuação integrante da estrutura da Administração direta e da estrutura da Administração indireta.
- b) Havendo a necessidade de manifestação do órgão consultivo, o parecer deverá ser emitido no prazo máximo de dez dias, salvo norma especial ou comprovada necessidade de maior prazo.
- c) Os atos que apresentem defeitos sanáveis podem ser objeto de convalidação pela própria Administração, desde que não acarretem lesão ao interesse público, nem prejuízo a terceiros.
- d) Os maiores de 65 (sessenta e cinco) anos terão prioridade na tramitação, em qualquer órgão ou instância, nos procedimentos administrativos em que figure como partes ou interessados.
- e) Os atos de delegação de competência são irrevogáveis.

- 7. Analise abaixo as assertivas relacionadas à Lei de Diretrizes e Bases nº 9.394/1996, assinalando, a seguir, a alternativa que contém a sequência CORRETA de preenchimento dos parênteses, de cima para baixo:
 - () É incumbência da União baixar normas gerais sobre cursos de graduação e pósgraduação.
 - () Os currículos do ensino médio incluirão, obrigatoriamente, o estudo da língua inglesa e poderão ofertar outras línguas estrangeiras, em caráter optativo, preferencialmente o espanhol, de acordo com a disponibilidade de oferta, locais e horários definidos pelos sistemas de ensino.
 - () Além dos seus cursos regulares, as instituições de educação profissional e tecnológica oferecerão cursos especiais, abertos à comunidade, ficando a matrícula condicionada ao nível de escolaridade do cidadão.
 - () A formação docente, exceto para a educação superior, incluirá prática de ensino de, no mínimo, trezentas horas.
 - () Qualquer cidadão habilitado com a titulação própria poderá exigir a abertura de concurso público de provas e títulos para cargo de docente de instituição pública de ensino que estiver sendo ocupado por professor não concursado, por mais de 4 (quatro) anos.
- a) F-F-F-F-V.
- b) V V F V F.
- c) V-V-V-F-F.
- d) V-F-F-F-F.
- e) V F V V V.

- 8. Com relação aos Cursos Técnicos de Nível Médio elencados na Organização Didática do IFRS, assinale abaixo a alternativa que contém a sequência CORRETA de preenchimento dos parênteses, de cima para baixo:
 - 1. Cursos Técnicos Integrados
 - 2. Cursos Técnicos Integrados à Educação Profissional na modalidade de Educação de Jovens e Adultos (EJA)
 - 3. Cursos Técnicos Subsequentes
 - 4. Cursos Técnicos Concomitantes
 - () Destinados aos estudantes que estão cursando o Ensino Médio, podendo ser oferecidos na modalidade presencial ou de educação a distância.
 - () Destinados aos portadores de certificado de conclusão do Ensino Fundamental, com idade mínima de 18 (dezoito) anos e oferecidos somente na modalidade presencial.
 - () Destinados aos portadores de certificado de conclusão do Ensino Fundamental e oferecidos somente na modalidade presencial.
 - () Destinados aos portadores de certificado de conclusão do Ensino Médio, podendo ser oferecidos na modalidade presencial ou de educação a distância.
- a) 4-2-1-3.
- b) 4-2-3-1.
- c) 3-4-2-1.
- d) 3-1-4-2.
- e) 2-4-3-1.

- 9. Em relação ao regime de trabalho do Plano de Carreiras e Cargos de Magistério Federal, previsto na Lei nº 12.772, de 28 de dezembro de 2012, assinale a alternativa INCORRETA:
- a) As Instituições Federais de Ensino poderão, de forma excepcional, e desde que aprovado pelo órgão colegiado superior competente, admitir a adoção do regime de 40 (quarenta) horas semanais de trabalho, em tempo integral, observando-se dois turnos diários completos, sem dedicação exclusiva, para áreas com características específicas.
- b) No regime de dedicação exclusiva, será admitida, observadas as condições da regulamentação própria de cada Instituição Federal de Ensino, a percepção de remuneração de cargos de direção ou funções de confiança.
- c) Os professores, em especial aqueles submetidos ao regime de dedicação exclusiva, não poderão ocupar cargo de dirigente máximo de fundação de apoio.
- d) Se um professor tiver se afastado sem prejuízo de sua remuneração, eventual solicitação de alteração de regime de trabalho somente será autorizada após o decurso de prazo igual ao do afastamento concedido.
- e) O professor de uma Instituição Federal de Ensino, ocupante de cargo efetivo do Plano de Carreiras e Cargos de Magistério Federal, poderá ser submetido ao regime de tempo parcial de 20 (vinte) horas semanais de trabalho.
- 10. De acordo com as disposições do Regimento Geral do IFRS, NÃO é competência do Diretorgeral de *Campus*:
- a) Autorizar viagens a serviço no território nacional de servidores sob sua direção.
- b) Ordenar despesas e praticar todos os atos de gestão orçamentária e financeira, no âmbito de suas respectivas unidades.
- c) Promover ações com vistas à captação de recursos para o financiamento de projetos, com recursos orçamentários próprios regulamentados internamente e junto a entidades e organizações públicas e privadas.
- d) Presidir o Conselho do Campus, incluindo a posse dos seus membros, convocação e presidência das sessões, com direito a voto de qualidade, além do voto comum.
- e) Planejar, executar, coordenar e supervisionar as políticas de ensino, pesquisa, extensão e administração do campus, em articulação com as Pró-reitorias.

CONHECIMENTOS ESPECÍFICOS

- 11. Considere as seguintes afirmações:
 - I. Toda sequência monótona e limitada é convergente;
 - II. Dado c um número real, a sequência $(nc^n)_{n\in\mathbb{N}}$ é crescente:
- III. Toda sequência limitada é convergente.

Assinale a alternativa em que toda(s) a(s) afirmativa(s) está (ao) **CORRETA(S)**:

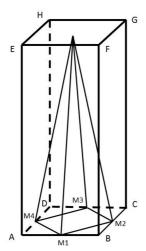
- a) Apenas I.
- b) Apenas I e II.
- c) Apenas I e III.
- d) Apenas II, III.
- e) I, II e III.
- 12. Analise as afirmativas identificando com "V" as VERDADEIRAS e com "F" as FALSAS assinalando a seguir a alternativa CORRETA, na sequência de cima para baixo:
 - () Se f(x) é uma função tal que F(x) é sua primitiva, quando existir, então $F(x) = f^{-1}(x)$.
 - () A Regra da Cadeia é utilizada para encontrar a derivada de um produto de funções diferenciáveis.
 - () Os pontos críticos de uma função são os pontos em que a derivada dessa função se anula.
 - () Toda função contínua é diferenciável.
- a) F-F-V-F.
- b) F V F V.
- c) F-F-F-V.
- d) V V V F.
- e) F-F-F-F.

13. Considere a seguinte matriz, sendo μ um número real:

$$A = \begin{pmatrix} \mu & 1 & 1 & 1 & 1 & 1 \\ \mu & \mu + 1 & 2 & 2 & 2 & 2 \\ \mu & \mu + 1 & \mu + 2 & 3 & 3 & 3 \\ \mu & \mu + 1 & \mu + 2 & \mu + 3 & 4 & 4 \\ \mu & \mu + 1 & \mu + 2 & \mu + 3 & \mu + 4 & 5 \\ \mu & \mu + 1 & \mu + 2 & \mu + 3 & \mu + 4 & \mu + 5 \end{pmatrix}$$

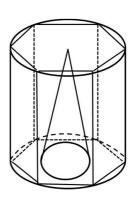
O determinante da matriz A é:

- a) 0
- b) 1
- c) μ^6
- d) $\mu^2 + 1$
- e) $\mu(\mu + 1)(\mu + 2)(\mu + 3)(\mu + 4)(\mu + 5)$
- 14. Observe que a equação $y-y^2+xy'=0$ não é exata. Assinale a alternativa que corresponde a um fator integrante dessa equação:
- a) xy
- b) $x^{-2}y^{-2}$
- c) $x^{-1}v^{-1}$
- d) $x^{-2}v^{-1}$
- e) $x^{-1}y^{-2}$
- 15. A distância de um ponto $(x_0,\,x_1,\,x_2)$ a um plano em \mathbb{R}^3 dado por uma equação cartesiana ax+by+cz=d é dada por:
- a) $\frac{|ax_0 + bx_1 + cx_2 d|}{a^2 + b^2 + c^2}$
- b) $\frac{|ax_0 + bx_1 + cx_2 d|^2}{\sqrt{a^2 + b^2 + c^2}}$
- c) $\frac{|ax_0+bx_1+cx_2-d|}{\sqrt{a^2+b^2+c^2}}$
- d) $\frac{|ax_0+bx_1+cx_2-d|^2}{a^2+b^2+c^2}$
- e) $|ax_0 + bx_1 + cx_2 d|$


16. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que $x^3 \le f(x) \le x^2$ para x < 1. O resultado de $\lim_{x \to 0} \frac{f(x)}{x}$ é dado por:

- a) 0
- b) 1
- c) e
- d) ∞
- e) -∞

17. O resultado de $\lim_{x\to 1} \left(\frac{x-1}{x^2-1}\right)^{x+1}$ é dado por:


- a) 0
- b) $\frac{1}{4}$
- c) 1
- d) ∞
- e) -∞

18. Uma pirâmide regular é inscrita ao prisma ABCDEFGH de base quadrada, o lado da base do prisma possui medida l e a altura do prisma 6l. A base da pirâmide é formada pela união dos pontos médios $(M_1, M_2, M_3 \ e \ M_4)$ dos lados da base ABCD do prisma, conforme a figura abaixo. Calcule a razão entre o volume da pirâmide e a área total da pirâmide. E, assinale a alternativa CORRETA:

- a) $\frac{1}{3}$
- b) l³
- c) 9l²
- d) $\frac{1}{9}$
- e) $\frac{1^2}{3}$

19. A figura abaixo possui um cone interno ao prisma hexagonal inscrito no cilindro de raio r. A razão entre a área da base do cone A_2 e a área da base do cilindro A_1 é $\left(\frac{A_2}{A_1}\right)=\frac{1}{3}$. Nessas condições, calcule a diferença entre o volume de ar contido no prisma hexagonal (externo ao cone) e o volume de ar contido no cilindro (externo ao prisma hexagonal) sabendo que a altura dos sólidos é 4r. E, assinale a alternativa CORRETA:

- a) $\frac{40}{9} \pi r^3$
- b) $\frac{32}{9}\pi r^3$
- c) $r^3(12\sqrt{3} 5\pi)$
- d) $\frac{4r^3}{9} (27\sqrt{3} 10\pi)$
- e) $\frac{4r^3}{9}(24\sqrt{3}-10\pi)$

20. As afirmativas abaixo se referem aos conceitos de Geometria Analítica Plana:

- I. Para que os pontos A(2,4), B(x,-3) e C(1,-2) sejam vértices de um triângulo, o valor de x deverá ser $x \neq \frac{6}{5}$.
- II. A medida da altura de um triângulo equilátero ABC cuja base BC está apoiada sobre a reta $y=-\frac{4}{3}x+5$, sendo A(2,-4), é 3,8 u.c.
- III. A circunferência de equação $x^2 + y^2 8x + 6y + 9 = 0$ passa pelos pontos P(4,1) e Q(8,-3) e possui raio igual a 16 u. c.
- IV. As circunferências de equações $x^2 + y^2 = 32$ e $x^2 + y^2 + 8y = 0$ são secantes, pois possuem dois pontos em comum.

Assinale a alternativa em que toda(s) a(s) afirmativa(s) está(ão) **CORRETA(S)**:

- a) Apenas II.
- b) Apenas I, II.
- c) Apenas II e IV.
- d) Apenas I, II e IV.
- e) I, II, III e IV.

21. Duas pessoas partem de um mesmo ponto em um terreno plano, caminhando em linha reta formando um ângulo de 120° entre os trajetos percorridos por cada pessoa. Ambas caminham com velocidade constante de 1,5 m/s (metros por segundo) e 1 m/s, respectivamente. Quando a pessoa que se movimenta mais rápido percorre a distância de 300 metros, pode- se afirmar que a taxa de variação da distância, em relação ao tempo, entre as duas pessoas, em m/s, é dada por:

- a) $\frac{2\sqrt{7}}{3}$
- b) $\frac{15\sqrt{19}}{38}$
- c) $\frac{3\sqrt{3}}{2}$
- d) $\frac{5}{2}$
- e) $\frac{\sqrt{19}}{2}$

22. Sobre o estudo de Seções Cônicas em Geometria Analítica Plana, analise as afirmativas abaixo:

- I. Dados dois pontos distintos chamados focos F_1 e F_2 , pertencentes a um plano α , e 2c a distância entre eles. Elipse é o lugar geométrico formado pelo conjunto dos pontos de α cuja soma das distâncias, de cada um desses pontos, a F_1 e F_2 é maior que F_2 0 e igual à medida do eixo maior da elipse.
- II. Dados dois pontos distintos chamados vértice e foco, V e F, respectivamente, pertencentes a um plano α . Parábola é o lugar geométrico formado pelo conjunto dos pontos que estão à mesma distância do foco e do vértice.
- III. Dados dois pontos distintos chamados focos F_1 e F_2 , e dois pontos distintos chamados vértices V_1 e V_2 , pertencentes a um plano α . Hipérbole é o lugar geométrico formado pelo conjunto dos pontos de α cuja diferença das distâncias, de cada um desses pontos, a F_1 e F_2 é igual a duas vezes a distância entre os vértices, ou seja, duas vezes a medida do eixo real.
- IV. Na parábola, o foco F e a reta diretriz d estão posicionados de tal forma que o vértice V é o ponto médio do segmento formado pela distância entre F e d, perpendicular à diretriz.
- V. Excentricidade da elipse é a razão formada pela medida da distância dos elementos foco até o centro e $\frac{1}{2}$ da medida do eixo maior.

Assinale a alternativa em que todas as afirmativas estão **CORRETAS**:

- a) Apenas IV e V.
- b) Apenas I, II, III.
- c) Apenas I, IV e V.
- d) Apenas II, IV e V.
- e) Apenas I, II, III e IV.

- 23. Segundo Howard (2010, p.101), "O desenvolvimento do Cálculo no século XVII por Newton e Leibniz forneceu o entendimento do que significa 'taxa de variação instantânea', tal como a velocidade ou aceleração. A pedra fundamental sobre a qual se apoia a ideia de taxa de variação é o conceito de 'limite'". Com base nos conceitos de cálculo sobre limites e derivadas, analise as afirmativas abaixo:
 - I. O limite da função $f(x) = \sqrt{3x + 6} \sqrt{3x}$ quando x tende ao infinito é zero.
 - II. A derivada da função $f(x) = \frac{3^2 + x^2}{3^2 x^2}$ é dada por $f'(x) = \frac{36x}{(9-x^2)}$.
- III. A derivada da função $f(x) = \arccos\left(\frac{x^3}{9}\right)$ é dada por $f'(x) = -\frac{3x^2}{\sqrt{81-x^6}}$.

Assinale a alternativa em que toda(s) a(s) afirmativa(s) está(ão) **CORRETA(S)**:

- a) Apenas III.
- b) Apenas I, II.
- c) Apenas I e III.
- d) Apenas II, III.
- e) I, II, III.
- 24. A solução CORRETA da integral indefinida $\int \frac{2x+9}{3x^2+2x+7} dx$, sendo $\mathcal C$ uma constante, é dada por:

a)
$$\frac{1}{3}\ln|3x^2 + 2x + 7| + \frac{5\sqrt{5}}{6} \arctan\left(\frac{3x+1}{2\sqrt{5}}\right) + C$$
.

b)
$$\frac{1}{3}\ln|3x^2 + 2x + 7| + \frac{25}{9}\ln|x + \frac{1}{3} + \sqrt{3x^2 + 2x + 7}| + C$$
.

c)
$$\ln|3x^2 + 2x + 7| + \frac{25}{9} \arctan\left(\frac{3x+1}{2\sqrt{5}}\right) + C$$
.

d)
$$\ln|3x^2 + 2x + 7| + \frac{25}{3}\ln|x + \frac{1}{3} + \sqrt{3x^2 + 2x + 7}| + C$$
.

e)
$$\frac{1}{3}\ln|3x^2 + 2x + 7| + \frac{25}{9}\ln\left|\frac{3x + 2\sqrt{5}}{2\sqrt{5} - x}\right| + C$$
.

25. Sendo O, o ponto de origem do sistema de coordenadas ortogonais e OAB um triângulo equilátero de lado 6 cm pertencente ao 1º quadrante. Sabendo que o lado OA está apoiado sobre o eixo das abcissas, a alternativa que apresenta, CORRETAMENTE, a equação geral da reta perpendicular ao lado AB e que passa pelo ponto médio de AB é:

a)
$$x - \sqrt{3}y - 3 = 0$$

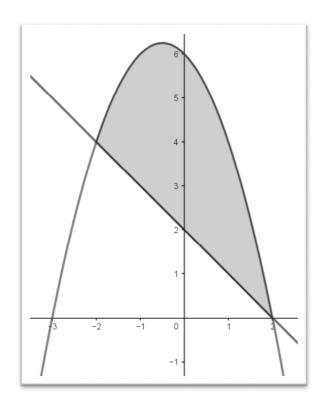
b)
$$2x - 2\sqrt{3}y = 0$$

c)
$$2\sqrt{3}x - 2y - 6(1 + \sqrt{3}) = 0$$

d)
$$x - \sqrt{3}y - 6(\sqrt{3} - 1) = 0$$

e)
$$2x - \sqrt{3}y + 6 = 0$$

- 26. As afirmativas abaixo envolvem os conceitos da Trigonometria no que se referem à relação entre lados e ângulos de um triângulo, relações trigonométricas e a variação dos arcos no ciclo trigonométrico.
 - I. Em um triângulo ABC são conhecidas as medidas dos lados $\overline{AC}=45~\mathrm{cm},~\overline{AB}=40~\mathrm{cm}$ e $\overline{BC}=34~\mathrm{cm}.$ Nessas condições o ângulo \hat{C} deve ser agudo.
 - II. No triângulo DEF o lado $\overline{DF}=180\,\mathrm{cm}$ e o ângulo $\widehat{E}=135^\circ$. Se o ângulo $\widehat{F}=30^\circ$ então \overline{DE} é aproximadamente 127cm.
- III. A relação $\sec x \cos x = \sec x \cdot \tan x$ não é uma identidade trigonométrica.
- IV. Quando os arcos do ciclo trigonométrico variam entre 270° até 360°. Os valores da função secante são decrescentes.


Assinale a alternativa em que todas as afirmativas estão **CORRETAS**:

- a) Apenas I e II.
- b) Apenas I e IV.
- c) Apenas I, II e IV.
- d) Apenas II, III e IV.
- e) I, II, III e IV.

- 27. Um atleta está numa ilha de onde ele observa a 240 m, na margem do rio, um ponto A de forma ortogonal com sua localização. Ao longo da margem, que consideramos reta, ele avista um ponto B distante 500 m do ponto A. O objetivo do atleta é chegar ao ponto B o mais rápido possível, nadando e/ou correndo. Ele sabe que sua velocidade de nado é de 2m/s e de corrida é de 10m/s. Para que ele alcance seu objetivo no menor tempo possível ele deverá correr, a margem do rio, por: (considere a aproximação $\sqrt{6}=2,45$)
- a) 0m.
- b) 49m.
- c) 260m.
- d) 451m.
- e) 500m.
- 28. Dada a função $f: R \to R$, tal que f(x) = sen(x) + cos(x), qual dos números abaixo NÃO faz parte do conjunto imagem?
- a) -1
- b) 0
- c) 1
- d) $\sqrt{2}$
- e) $\sqrt{3}$
- 29. Em uma fábrica de roupas constatou-se que em um lote de 3385 camisetas, 50% delas não apresentavam nenhum defeito, 28% apresentava um único defeito, 15% exatamente dois defeitos e o restante apresentava exatamente três defeitos. Escolhendo aleatoriamente uma dessas camisetas qual a probabilidade, de ao olhar para ela, se consiga identificar pelo menos dois defeitos?
- a) 7%
- b) 22%
- c) 35%
- d) 43%
- e) 50%

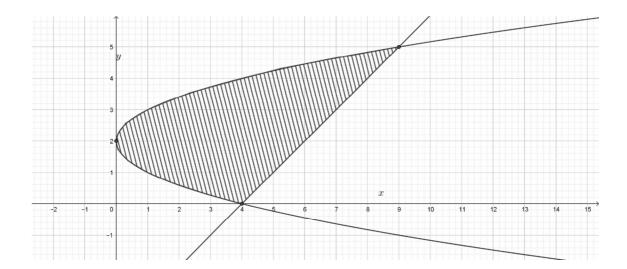
- 30. Quanto aos conceitos de Geometria Plana Euclidiana, qual das proposições abaixo é FALSA?
- a) A área de um quadrado é a metade do quadrado de sua diagonal.
- b) Em todo triângulo retângulo cuja hipotenusa é o dobro de um de seus catetos, um de seus ângulos agudos mede de 60º.
- c) Todo quadrado é também um retângulo.
- d) Todo quadrilátero de quatro lados congruentes é um quadrado.
- e) Todo triângulo equilátero é um triângulo isósceles.
- 31. Um determinado medicamento é administrado em três doses de1g a cada 8 horas, durante um dia. A meia vida desse medicamento é de 4 horas, ou seja, uma vez administrada, a cada 4 horas que se passam a substância ativa do produto no corpo humano cai pela metade. Um determinado paciente inicia o tratamento exatamente a meia noite do dia 20 de agosto, quanto de substância ativa, desse medicamento, ele possui no seu corpo às 16 horas do mesmo dia antes ter ingerir a última dose?
- a) 1,75g
- b) 2g
- c) 300g
- d) 312,5mg
- e) 750 mg

32. Sejam as funções $f\colon R\to R$ e $g\colon R\to R$, tais que f é uma função quadrática e g uma função afim e f(-3)=f(2)=0, f(0)=6, g(-2)=4 e g(2)=0 conforme a figura. Calcule a área da região sombreada.

- a) $\frac{32}{3}$ u.a.
- b) $\frac{32}{6}$ u.a.
- c) $\frac{64}{3}$ u.a.
- d) 32 u.a.
- e) 64 u.a.

33. Qual das opções abaixo é o terceiro lado de um triângulo, conhecidos um lado de 10 cm, o outro de 20 cm e sua área de $3\sqrt{231}$ cm².

- a) 6 cm
- b) 8 cm
- c) 9 cm
- d) 10 cm
- e) 12 cm


34. Analise as afirmações:

- Se uma função é injetora, então é sempre possível estabelecer uma relação biunívoca entre os elementos do seu conjunto imagem e os elementos do conjunto contradomínio.
- II. Se uma função é sobrejetora, então é sempre possível estabelecer uma relação biunívoca entre os elementos do seu conjunto imagem e os elementos do conjunto contradomínio.
- III. Se uma função é bijetora, então é sempre possível estabelecer uma relação biunívoca entre os elementos do seu conjunto imagem e os elementos do conjunto contradomínio.
- IV. Se as funções $f: A \to B$ e $g: B \to C$ são sobrejetoras, então a função composta $g \circ f: A \to C$ é sobrejetora.

Das afirmações acima, estão CORRETAS:

- a) Apenas II e III.
- b) Apenas III e IV.
- c) Apenas I, II e III.
- d) Apenas I, II e IV.
- e) Apenas I, III e IV.

35. No plano cartesiano abaixo, onde o eixo horizontal é o eixo das abscissas e o eixo vertical é o eixo das ordenadas estão representados uma parábola e uma reta que se cruzam nos pontos (4,0) e (9,5). Sabendo que o vértice da parábola é o ponto (0,2), pode-se concluir que a área hachurada (compreendida entre a parábola e a reta), em unidades de área, é:

- a) $\frac{125}{6}$
- b) $\frac{70}{6}$
- c) $\frac{47}{2}$
- d) $\frac{61}{3}$
- e) $\frac{112}{9}$

36. Dada a equação $\frac{x^2}{16} + \frac{y^2}{12} = 1$ que representa uma curva no plano cartesiano, podemos afirmar que esta curva e as equações das retas tangentes a esta curva nos pontos de abscissa x=2 são, respectivamente:

a) Circunferência,
$$y = -\frac{x}{2} e y = \frac{x}{2}$$

b) Elipse,
$$y = \frac{-x+8}{2} e y = \frac{x-8}{2}$$

c) Elipse,
$$y = -\frac{x}{2} e y = \frac{x}{2}$$

d) Hipérbole,
$$y = \frac{-x+8}{2}$$
 e $y = \frac{x-8}{2}$

e) Hipérbole,
$$y = \frac{-x-8}{2}$$
 e $y = \frac{x+8}{2}$

37. Considerando um vetor (x,y) no plano cartesiano, a matriz que representa, primeiramente, uma reflexão desse vetor em relação a uma reta que passa pela origem e que forma um ângulo a com o eixo x positivo e, após, uma rotação em torno da origem por um ângulo b é dada por:

a)
$$\begin{bmatrix} \cos(2a+b) & -\sin(2a+b) \\ \sin(2a+b) & -\cos(2a+b) \end{bmatrix}$$

b)
$$\begin{bmatrix} \cos(a+b) & -\sin(a+b) \\ \sin(a+b) & \cos(a+b) \end{bmatrix}$$

c)
$$\begin{bmatrix} \cos(a+b) & \sin(a+b) \\ \sin(a+b) & -\cos(a+b) \end{bmatrix}$$

d)
$$\begin{bmatrix} \cos(a+b) & -\sin(a+b) \\ -\sin(a+b) & \cos(a+b) \end{bmatrix}$$

e)
$$\begin{bmatrix} \cos(2a+b) & \sin(2a+b) \\ \sin(2a+b) & -\cos(2a+b) \end{bmatrix}$$

38. Dado o sistema linear:

$$\begin{cases} x_1 + 2x_2 + x_3 + 3x_4 = 2\\ 2x_1 + 3x_2 + 2x_3 + x_4 = -1\\ 3x_1 + 5x_2 + 3x_3 + 4x_4 = 1\\ x_1 + x_2 + x_3 - 2x_4 = -3 \end{cases}$$

Qual das alternativas a seguir apresenta o conjunto solução deste sistema?

a)
$$\{(-9,5,1,0)\}$$

b)
$$\{(-8-t+7s, 5-5s, t, s); t, s \in \mathbb{R}\}$$

c)
$$\{(-1,0,0,1),(-2,0,1,1)\}$$

d)
$$\{(-8+7s, 5-5s, 0, s); s \in \mathbb{R} \}$$

e)
$$\{(-8-t+7s+r,t,r,s);t,r,s \in \mathbb{R}\}$$

39. A equação diferencial da forma $y'+P(x)y=Q(x)y^n$ em y=y(x), onde P(x) e Q(x) são funções contínuas em um intervalo (a,b) e $n\in\mathbb{Z}$, é conhecida como a equação de Bernoulli. Se $n\neq 0$ e $n\neq 1$ podemos transformar a equação de Bernoulli em uma equação diferencial linear mediante uma mudança da variável dependente $z=y^{1/p}$. Considere a seguinte equação de Bernoulli $y'+\frac{1}{x}y=\left(cos(x)\right)y^{-1}$ Após trocarmos a variável dependente por meio da relação $z=y^{1/p}$ obtemos, para um valor de p apropriado, uma equação diferencial linear em p que tem solução geral expressa por:

a)
$$z(x) = \frac{C}{x^2} + 2sen(x) + \frac{4cos(x)}{x} - \frac{4sen(x)}{x^2}$$

b)
$$z(x) = \frac{C}{x^2} - 2\cos(x) - \frac{4\cos(x)}{x} + \frac{4\sin(x)}{x^2}$$

c)
$$z(x) = \frac{c}{x} - 2\text{sen}(x) - \frac{4\text{cos}(x)}{x} - \frac{4\text{sen}(x)}{x^2}$$

d)
$$z(x) = \frac{c}{x^2} + 2sen(x) - \frac{4sen(x)}{x} + \frac{4cos(x)}{x^2}$$

e)
$$z(x) = \frac{C}{x} + 2sen(x) + \frac{4sen(x)}{x} - \frac{4cos(x)}{x^2}$$

40. Considere a equação diferencial ordinária (EDO) $\frac{10xe^x}{x^2+4} - xy^2 + 2xyy' = 0$ em y = y(x). Podese mostrar que essa equação admite um fator integrante $\mu = \mu(x)$ que a torna uma equação exata. Sobre $\mu(x)$ e as soluções da EDO, respectivamente, é CORRETO afirmar que:

- a) $\mu(x) = \frac{e^{-x}}{x}$ é um possível fator integrante e $y(x) = \pm \sqrt{Ce^x 5e^x arctg\left(\frac{x}{2}\right)}$ é a solução geral da EDO.
- b) $\mu(x) = \frac{e^x}{x}$ é um possível fator integrante e $y(x) = \pm \sqrt{Ce^{-x} 5e^{-x} arctg\left(\frac{x}{2}\right)}$ é a solução geral da EDO.
- c) $\mu(x) = \frac{e^{-x}}{x}$ é um possível fator integrante e $y(x) = \pm \sqrt{Ce^{-x} + 5e^{-x} arctg\left(\frac{x}{2}\right)}$ é a solução geral da EDO.
- d) $\mu(x) = \frac{e^{-x}}{x}$ é um possível fator integrante e $y(x) = \pm \sqrt{Ce^x + 5e^x arctg\left(\frac{x}{4}\right)}$ é a solução geral da EDO.
- e) $\mu(x)=\frac{e^x}{x}$ é um possível fator integrante e $y(x)=\pm\sqrt{Ce^{-x}+5e^{-x}arctg\left(\frac{x}{4}\right)}$ é a solução geral da EDO.

ESPAÇO PARA CÁLCULOS	

ESPAÇO PARA CÁLCULOS		