TÉCNICO(A) QUÍMICO(A) DE PETRÓLEO I

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

- 01 Você recebeu do fiscal o seguinte material:
 - a) este caderno, com o enunciado das 70 questões das Provas Objetivas, todas com valor de 1,0 ponto, sem repetição ou falha, assim distribuídas:

LÍNGUA PORTUGUESA I	MATEMÁTICA	ATUALIDADES	CONHECIMENTOS ESPECÍFICOS
Questões	Questões	Questões	Questões
1 a 10	11 a 20	21 a 30	31 a 70

- b) 1 CARTÃO-RESPOSTA destinado às respostas às questões objetivas formuladas nas provas.
- Verifique se este material está em ordem e se o seu nome e número de inscrição conferem com os que aparecem no CARTÃO-RESPOSTA. Caso contrário, notifique IMEDIATAMENTE o fiscal.
- Após a conferência, o candidato deverá assinar no espaço próprio do CARTÃO-RESPOSTA, preferivelmente a caneta esferográfica de tinta na cor preta.
- No CARTÃO-RESPOSTA, a marcação das letras correspondentes às respostas certas deve ser feita cobrindo a letra e preenchendo todo o espaço compreendido pelos círculos, a caneta esferográfica de tinta na cor preta, de forma contínua e densa. A LEITORA ÓTICA é sensível a marcas escuras; portanto, preencha os campos de marcação completamente, sem deixar claros.
 - Exemplo: (A) (C) (D) (E)
- Tenha muito cuidado com o CARTÃO-RESPOSTA, para não o DOBRAR, AMASSAR ou MANCHAR.
 O CARTÃO-RESPOSTA SOMENTE poderá ser substituído caso esteja danificado em suas margens superior ou inferior -BARRA DE RECONHECIMENTO PARA LEITURA ÓTICA.
- Para cada uma das questões objetivas, são apresentadas 5 alternativas classificadas com as letras (A), (B), (C), (D) e (E); só uma responde adequadamente ao quesito proposto. Você só deve assinalar UMA RESPOSTA: a marcação em mais de uma alternativa anula a questão, MESMO QUE UMA DAS RESPOSTAS ESTEJA CORRETA.
- 07 As questões objetivas são identificadas pelo número que se situa acima de seu enunciado.
- **08 SERÁ ELIMINADO** do Processo Seletivo Público o candidato que:

PRESENÇA.

- a) se utilizar, durante a realização das provas, de máquinas e/ou relógios de calcular, bem como de rádios gravadores, headphones, telefones celulares ou fontes de consulta de qualquer espécie;
- b) se ausentar da sala em que se realizam as provas levando consigo o Caderno de Questões e/ou o CARTÃO-RESPOSTA.
- Reserve os 30 (trinta) minutos finais para marcar seu CARTÃO-RESPOSTA. Os rascunhos e as marcações assinaladas no Caderno de Questões NÃO SERÃO LEVADOS EM CONTA.
- 10 Quando terminar, entregue ao fiscal O CADERNO DE QUESTÕES E O CARTÃO-RESPOSTA e ASSINE A LISTA DE
 - **Obs.** O candidato só poderá se ausentar do recinto das provas após **1 (uma) hora** contada a partir do efetivo início das mesmas. Por razões de segurança, o candidato **não** poderá levar o Caderno de Questões.
- 11 O TEMPO DISPONÍVEL PARA ESTAS PROVAS DE QUESTÕES OBJETIVAS É DE 4 (QUATRO) HORAS.
- 12 As questões e os gabaritos das Provas Objetivas serão divulgados no segundo dia útil após a realização das provas na página da FUNDAÇÃO CESGRANRIO (www.cesgranrio.org.br).

LÍNGUA PORTUGUESA I

Eleições pelo computador

Em 2004, os cidadãos de Miraflores, na região metropolitana de Lima, no Peru, elegeram os representantes locais pela web. Os eleitores faziam um registro na prefeitura e recebiam um endereco eletrônico e uma 5 senha, que permitia votar uma única vez. Quem tinha computador pôde votar de casa. Quem não tinha podia usar cabines instaladas em ruas, parques e outros espaços públicos. A experiência deu certo e foi repetida em outra eleição este ano. [...] A cidade não foi pioneira por 10 acaso. É 100% wireless. Oferece acesso gratuito à internet sem fio a seus 90.000 habitantes. Além de votarem online, os miraflorinos têm à disposição uma série de serviços. Podem, por exemplo, solicitar documentos de identidade pela internet ou assistir ao vivo a concertos musi-15 cais e casamentos.

Miraflores é um bom exemplo, mas não o único, de como as novas tecnologias podem ampliar o acesso da população à cidadania. [...] O uso da internet para a realização de eleições desperta interesse na Europa há al-20 gum tempo.

O Brasil, que desde a década de 90 possui um sistema de votação eletrônica, não está alheio a essas pesquisas. No ano passado, um projeto batizado de Eleição Eletrônica do Futuro foi testado em Florianópolis. Trata-25 se de um possível embrião do que seria a votação pela internet no país. A identidade do eleitor seria conferida pelo uso de cartões inteligentes - que substituiriam o título eleitoral – e de leitores de impressões digitais. [...]

Votações pela internet não são a única forma de de-30 mocracia digital. A disseminação da rede já impulsiona a cidadania de outras maneiras – seja por um acesso mais transparente aos números da administração pública, seja pelo fenômeno dos blogs, que na China se tornaram saída para driblar o controle da informação pelo governo co-35 munista. [...]

Ao democratizar o acesso ao conhecimento, a web se torna aliada na luta pela igualdade social. "A televisão foi um fenômeno que levou informações a populações carentes que de outra forma nunca teriam acesso a elas. O 40 potencial da internet é ainda maior", afirma uma repre-

- sentante da força-tarefa da Organização das Nações Unidas para tecnologias de comunicação. O motivo é simples. Na internet, diferentemente da televisão, o usuário não é um mero espectador passivo. Pode procurar a in-
- 45 formação que deseja e difundir suas opiniões. Um estudo feito num cibercafé gratuito da Favela da Rocinha, no Rio

de Janeiro, mostrou que a grande maioria dos sites visitados é de ciências e de pesquisa escolar.

O melhor exemplo da democratização do acesso à in-50 formação é a digitalização de acervos do mundo inteiro.

Veja Especial Tecnologia, jul. de 2005 (adaptado)

Conforme o texto, indique a opção que NÃO traz a forma de como o cidadão pode exercer a cidadania com a ajuda da tecnologia.

- (A) Votar nas eleições locais.
- (B) Disseminar crenças e idéias.
- (C) Controlar administração pública.
- (D) Procurar informações científicas.
- (E) Assistir a um casamento ao vivo.

2

A experiência mencionada na linha 8 do texto se refere a:

- (A) eleger os representantes pela web.
- (B) poder votar exclusivamente uma única vez.
- (C) fazer registro e receber senha da prefeitura.
- (D) usar o próprio computador para exercício da cidadania.
- (E) usar cabines de parques e outros espaços públicos.

De acordo com o texto, assinale como verdadeira (V) ou falsa (F) cada afirmação abaixo.

O projeto Eleição Eletrônica do Futuro foi:

- um primeiro passo para a adoção da eleição via internet no Brasil.
- o sistema de votação eletrônica adotado no Brasil na década de 90.
- um exemplo de pesquisa brasileira sobre eleição eletrônica.

A seqüência correta é:

- (A) V F F
- (B) V V F
- (C) V F V (E) F V F
- (D) F F V

A palavra "disseminação" (I.30) NÃO pode ser substituída no texto por:

(A) difusão.

- (B) separação.
- (C) propagação.
- (D) popularização.
- (E) democratização.

A desvantagem da televisão em relação à internet, apontada no texto, é a:

- (A) passividade dos usuários.
- (B) reduzida velocidade do meio.
- (C) pequena facilidade de acesso.
- (D) inexistência de programas culturais
- (E) carência da população que a utiliza.

BR PETROBRAS

6

O fato de os acervos estarem sendo digitalizados é a da democratização do acesso à informação.

De acordo com o texto, o termo que preenche corretamente a lacuna acima é:

(A) causa.

(B) conseqüência.

(C) evidência.

(D) aspiração.

(E) razão.

7

Assinale a opção em que a concordância segue a norma culta da língua.

- (A) Cada um dos eleitores escolherão os locais de votação.
- (B) Ocorreu na última década importantes desenvolvimentos tecnológicos.
- (C) As vezes os brasileiros não parecem conhecerem suas obrigações eleitorais.
- (D) Quase 100% da população de Miraflores acessa a internet.
- (E) Devem haver muitos estudantes buscando informações pela internet.

8

Observe e analise o trecho "A disseminação já impulsiona ... seja por um acesso mais transparente ..., seja pelo fenômeno dos blogs, ... (l.30-33)

Indique a opção em que a expressão **NÃO** apresenta um sentido equivalente ao do texto destacado acima.

- (A) parte por um ..., parte pelo fenômeno
- (B) quer por um ..., quer pelo fenômeno.
- (C) já por um ..., já pelo fenômeno.
- (D) não só por um ..., tanto mais pelo fenômeno.
- (E) tanto por um ..., quanto pelo fenômeno.

q

Assinale a oração em que a regência verbal está corretamente realizada.

- (A) Na reunião, não aludi o assunto sigiloso.
- (B) A empresa atingiu à meta traçada pelo diretor.
- (C) As despesas excediam as suas possibilidades.
- (D) Os fatos se contrapõem à solicitação do chefe.
- (E) Os empregados aspiram o bom desempenho do setor.

10

Indique a opção em que a pontuação está de acordo com a norma culta.

- (A) Considere-se o seguinte aspecto da informação: rapidez, precisão, e novidade.
- (B) Necessita-se de que o departamento faça a aquisição de disquetes, cartuchos, e outros.
- (C) O material chegou no dia certo; mas alguns itens vieram danificados.
- (D) A diretora mandou cumprir o decreto, ela, que é a responsável, se preocupa.
- (E) Todos aqueles que ocupam posições de chefia ou liderança, vão à reunião.

MATEMÁTICA

Leia o texto abaixo para responder às questões 11 e 12.

"A expectativa de vida do brasileiro aumentou (...), seguindo uma tendência mundial. (...) Para os brasileiros nascidos em 2004, a expectativa de vida é de 71,7 anos. (...) O aumento reflete melhorias nos serviços de saúde pública e de saneamento (...). Em 1980, a expectativa de vida no Brasil era de 62,6 anos. (...) Os dados regionais mais uma vez confirmam as desigualdades entre as unidades da federação. Enquanto no primeiro colocado, o Distrito Federal, um bebê nascido em 2004 terá esperança de viver 74,6 anos, um bebê nascido em Alagoas, no mesmo ano, terá uma esperança bem abaixo da média nacional: 65,5 anos."

O Globo, 02 dez. 2005

11

Se, de 1980 a 2004, a expectativa de vida dos brasileiros tivesse aumentado linearmente, um brasileiro nascido em 1990 teria uma expectativa de vida, em anos, de, aproximadamente:

- (A) 65,9
- (B) 66,4
- (C) 67,1
- (D) 67,3
- (E) 68,1

12

A diferença, em anos, entre a expectativa de vida no Distrito Federal e em Alagoas, em 2004, era de:

- (A) 14,2
- (B) 11,1
- (C) 9,1
- (D) 8,9
- (E) 6,2

13

João lançou dois dados perfeitos e, sem que seu irmão visse o resultado, pediu-lhe que tentasse adivinhar a diferença entre o maior e o menor dos números obtidos. O irmão de João terá mais chance de acertar, se disser que essa diferença é igual a:

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

Num jogo de conhecimentos gerais, cada jogador responde a 10 questões por rodada, recebendo 4 pontos por resposta certa e perdendo 2 pontos por resposta errada. Para que o total de pontos obtidos por um jogador em uma rodada seja positivo, qual o número mínimo de questões que ele deverá acertar?


- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

15

Em certa papelaria, duas borrachas e dois lápis custam R\$2,20. João foi a essa papelaria e comprou um lápis, um caderno e uma borracha e gastou R\$4,00. Quanto custou, em reais, o caderno que João comprou?

- (A) 1,50
- (B) 1,80
- (C) 2,20
- (D) 2,80
- (E) 2,90

16

A figura acima representa a planta de uma escada de cinco degraus, construída na portaria de um prédio. A distância, em metros, entre os pontos A e B, marcados na figura, é:


- (A) 0,75
- (B) 1,44
- (C) 1,69
- (D) 1,80
- (E) 1,95

17

As férias de João se iniciam daqui a 12 dias, mas se ele quiser trabalhar 2 horas extras por dia, de hoje em diante, entrará de férias daqui a 9 dias. Sebastião decidiu que fará hora extra para entrar de férias mais cedo. Sendo assim, quantas horas diárias Sebastião vai trabalhar até entrar de férias?

- (A) 5
- (B) 6
- (C) 7
- (D) 8
- (E) 9

18

O volume ocupado por três caixas cúbicas que estão empilhadas em um depósito é de 0,192m³. A altura, em metros, dessa pilha de caixas é:

(A) 0,4

(B) 0,8

(C) 1,2

(D)1,6

(E) 2,4

19

A direção de certa escola decidiu sortear duas bolsas de estudo para 2006 entre os alunos que foram aprovados por média, em 2005. A situação dos alunos dessa escola é apresentada no quadro abaixo.

Ano: 2005	meninos	meninas	total
Aprovados por média	90	100	190
Fizeram prova final	190	210	400
Total	280	310	590

Considere que todos os alunos que foram aprovados direto tenham a mesma chance de ser sorteados. A probabilidade de que ambas as bolsas de estudo sejam sorteadas para meninos é de:

(A) $\frac{81}{361}$

(B) $\frac{100}{361}$

(C) $\frac{89}{399}$

(D) $\frac{110}{399}$

(E) $\frac{120}{399}$

20

O dono de uma padaria pediu a um funcionário que fosse ao Banco trocar uma cédula de R\$ 100,00 por cédulas de valores menores que R\$ 50,00 e recomendou-lhe que trouxesse, pelo menos, duas cédulas de cada valor. Se o funcionário seguir essa recomendação, o número máximo de cédulas de R\$ 1,00 que ele poderá trazer será:

(A) 26

(B) 30

(C)48

(D) 50

(E) 66

ATUALIDADES

21

Na Amazônia Brasileira, atuam empresas madeireiras que seguem padrões internacionais de exploração; são as chamadas "selo verde". Assinale a opção que apresenta uma característica dessas empresas.

- (A) Cortam todo tipo de árvore com valor comercial, retirando, contudo, menos de 500 árvores por quilômetro quadrado.
- (B) Representam a maior parte das madeireiras, nacionais e estrangeiras, atuantes na região em foco.
- (C) Fazem rodízio sistemático de áreas de floresta exploradas, respeitando intervalos de 25 anos.
- (D) Praticam o manejo sustentável da floresta, extraindo cerca de 1.000 árvores por km².
- (E) Produzem a denominada "madeira certificada", operando corte de árvores em qualquer parte do ano.

22

Observe o gráfico e leia o texto abaixo.

Jornal do Brasil, 2 dez. 2005 (adaptação).

"A expectativa de vida do brasileiro aumentou de 2003 para 2004, seguindo uma tendência mundial, mas o Brasil ainda aparece na 82ª posição no *ranking* mundial."

O Globo, 2 dez. 2005.

A partir da análise do gráfico e do texto, é correto afirmar que: (A) os brasileiros de ambos os sexos apresentam a mesma expectativa de vida, em conseqüência dos ganhos sociais alcançados pelas mulheres.

- (B) a expectativa de vida da população brasileira aumentou, apesar de a mortalidade infantil ainda se apresentar com números crescentes.
- (C) a esperança de vida dos brasilerios tem-se elevado nas últimas décadas, em decorrência do aumento gradual da taxa de natalidade.
- (D) a base de cálculo para assegurar aposentadoria plena do trabalhador brasileiro deverá mudar, devido ao aumento da longevidade da população.
- (E) a qualidade de vida dos brasileiros tem-se elevado, embora o aumento da expectativa de vida seja restrito às áreas urbanas do país.

23

O referendo popular, realizado no Brasil em outubro de 2005 e que tinha como tema o comércio de armas de fogo e munição, resultou na vitória do "não".

Úma implicação direta desse resultado é o(a):

- (A) impedimento da entrada em vigor do Art. 35 do Estatuto do Desarmamento.
- (B) redefinição das competências atribuídas ao Sistema Nacional de Armas.
- (C) alteração das disposições sobre posse ou porte ilegal de armas de fogo no País.
- (D) desaprovação integral dos artigos do Estatuto do Desarmamento, publicado em 2003.
- (E) neutralização imediata da vigência do Artigo 6º do Estatuto do Desarmamento.

24

O presidente do IBGE negou erro no PIB (Produto Interno Bruto), disse que a retração de 1,2% no terceiro trimestre reflete a realidade da economia e que o resultado pode ser revisto, mas, se houver mudança no número, ela não será grande.

Folha de São Paulo, 3 dez. 2005.

O resultado do PIB neste terceiro trimestre de 2005 não representa tendência negativa, mas retrata um momento transitório da economia brasileira, afirma técnico do IPEA.

Disponível em http://www.brasil.gov.br. **Em questão.** Acesso em 3 dez. 2005.

O Ministro da Fazenda admitiu que as turbulências no campo político afetaram a atividade econômica e abalaram as expectativas, tanto de consumidores quanto de empresários.

Jornal do Brasil. 2 dez. 2005.

Um fator que explica o resultado econômico em foco é o(a):

- (A) incremento dos lucros do agronegócio em detrimento do setor industrial.
- (B) aumento do nível dos estoques, sem acompanhamento da demanda.
- (C) fortalecimento da apreciação cambial, provocando fuga maciça de capitais.
- (D) aceleração do ritmo de crescimento do crédito direto ao consumidor.
- (E) elevação moderada da taxa de juros ao longo do primeiro semestre.

25

Acerca do desempenho do comércio exterior brasileiro, ao longo do ano de 2005, afirma-se:

- I As exportações têm apresentado crescimento, ainda que de forma descontínua.
- II A soja e seus derivados têm liderado as exportações.
- III O saldo da balança comercial tem registrado, continuamente, *superavit*.

Está(ão) correta(s) a(s) afirmativa(s):

- (A) I, apenas.
- (B) I e II, apenas.
- (C) le III, apenas.
- (D) II e III, apenas.

(E) I, II e III.

Expansão Criminosa

Desde o início da década de 1990, o tráfico de drogas dobrou de 400 bilhões para 800 bilhões de dólares ao ano e o volume de recursos movimentados pela lavagem de dinheiro aumentou 10 vezes, chegando a 1,5 bilhão de dólares por ano.

Revista Veja, ed. 1933, 30 nov. 2005.

O aspecto mais diretamente associado à situação descrita é a(o):

- (A) ausência de organismos financeiros internacionais.
- (B) inexistência de atuação policial internacional.
- (C) falta de legislação de combate a falsificações.
- (D) funcionamento de inúmeros "paraísos fiscais".
- (E) desenvolvimento mundial do comércio virtual.

27

No Oriente Médio, segundo observadores internacionais, a crise política entre israelenses e palestinos passou a contar com um dado novo e favorável à solução dos conflitos. Assinale-o.

- (A) Desocupação ordenada da Faixa de Gaza, por colonos e tropas israelenses.
- (B) Fim da intenção de se criar um Estado Palestino, após a morte de Yasser Arafat.
- (C) Desarmamento de grupos extremistas palestinos, como o Hamas e a Jihad Islâmica.
- (D) Libertação de milhares de presos palestinos, por determinação do governo de Israel.
- (E) Acordo bilateral sobre o *status* de Jerusalém, seguindo proposta de Ariel Sharon.

28

"(...) Grupos de jovens desempregados, na maioria de origem árabe ou africana, transformaram os subúrbios de Paris em campos de batalha. Eles depredaram escolas e estabelecimentos comerciais, atearam fogo a centenas de carros e entraram em confronto com a polícia e os bombeiros."

Revista Veja, ed. 1930, 9 nov. 2005.

A situação relatada acima tem como causa o seguinte par de fatores:

- (A) crescente número de imigrantes / controle sindical por líderes de extrema direita.
- (B) relativa estagnação econômica do país / maior índice de desemprego nas periferias.
- (C) alto custo da mão-de-obra nacional / superavit no serviço previdenciário dos franceses.
- (D) forte atuação do fundamentalismo islâmico / elevação da jornada semanal de trabalho.
- (E) intenso tráfico de drogas entre jovens desempregados / despreparo integral da polícia e dos bombeiros.

29

Texto I

Gelo do Ártico sofre sua maior perda

A perda de gelo poderia ter um efeito devastador para as populações locais de ursos polares e focas. O efeito mais grave, no entanto, seria a amplificação do aquecimento global, como apontam diversos modelos climáticos.

O Globo, 30 set. 2005.

Texto II

Pólo Norte sem gelo

A cobertura de gelo do Ártico no verão deste ano foi a menos extensa desde 1979, ocupando uma área 20% menor que a média histórica do período. O fenômeno é atribuído ao aquecimento global.

Revista Veja, ed. 1926, 12 out. 2005.

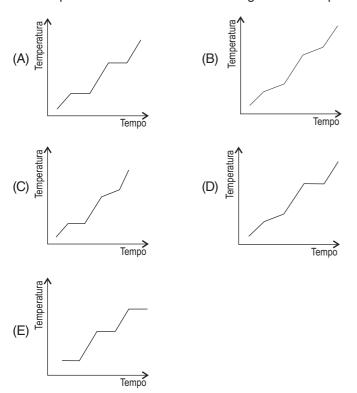
A leitura comparativa dos Textos I e II permite concluir que:

- (A) o primeiro texto desmente o segundo.
- (B) o segundo texto reproduz o primeiro.
- (C) o segundo texto complementa o primeiro.
- (D) ambos apresentam cenários de curto prazo.
- (E) ambos podem ser considerados ficcionais.

30

Acerca do Projeto Genoma Humano são apresentadas as seguintes características:

- I representa um avanço tecnológico responsável pela identificação, mapeamento e divulgação de seqüências de genes e de suas funções;
- II tem como objetivo final patentear as descobertas realizadas, impedindo a habilitação isolada de empresas privadas na exploração comercial de tais conquistas científicas:
- III decorre de iniciativa, controle e operacionalização governamentais, assegurando o domínio público dos dados obtidos, neutralizando o risco de privatização dos resultados produzidos.


Está(ão) correta(s) a(s) característica(s):

- (A) I, apenas.
- (B) I e II, apenas.
- (C) Le III, apenas.
- (D) II e III, apenas.
- (E) I, II e III.

CONHECIMENTOS ESPECÍFICOS

31

Assinale a opção cujo gráfico de mudança de fase representa o comportamento de uma mistura homogênea azeotrópica.

32

Um dos processos de tratamento do GLP consiste na extração da corrente gasosa com dietanolamina (DEA) cuja estrutura está representada abaixo.

A respeito da DEA é correto afirmar que:

- (A) age como um Ácido de Lewis no tratamento do GLP.
- (B) seu átomo central apresenta geometria trigonal plana.
- (C) é capaz de remover H₂S e CO₂ por extração.
- (D) é insolúvel em água e solúvel em hidrocarbonetos.
- (E) é nulo seu momento dipolar, em razão da sua simetria.

33

Uma refinaria de petróleo produz um efluente gasoso que contém 6,4 kg de SO_o por hora. Para eliminar esse poluente, o efluente foi passado por uma torre de absorção contendo CaO. Qual é a massa de CaO, em kg, necessária para eliminar todo o SO₂ gerado em 1 dia, admitindo-se que o rendimento da reação é de 80%?

(A) 5,6

(B) 7,0 (C) 120,0

(D) 134,4

(E) 168,0

34

Os detergentes comerciais são misturas cujo componente mais importante é um surfactante que, em geral, é um sal de ácido sulfônico de cadeia longa. Os detergentes biodegradáveis possuem cadeia normal, enquanto que os não biodegradáveis apresentam cadeia muito ramificada. Considere os surfactantes abaixo.

(I)
$$SO_3^{-1}Na^{+1}$$
 (II) $SO_3^{-1}Na^{+1}$

A respeito desses compostos é correto afirmar que o(a):

- (A) composto II é o ácido p-1,3,5,7-tetrametiloctilbenzenossulfônico.
- (B) composto II possui oito isômeros oticamente ativos.
- (C) composto II possui cadeia mista, insaturada e heterogênea.
- (D) fórmula molecular do composto I é C₁₈H₂₅SO₃Na.
- (E) porção alifática dos compostos I e II é responsável por suas propriedades hidrofílicas.

A tabela abaixo relaciona cinco polímeros e algumas aplicações características.

Polímero	Aplicação
I - Polietileno	M - Pranchas de surf
II - Cloreto de Polivinila (PVC)	N - Fibras têxteis
III - Poliamida	O - Tubos para água e esgoto
IV - Poliuretano	P - Fabricação de tintas de parede
V - Poliacetato de Vinila (PVA)	Q - Películas plásticas para embalagens

A relação correta entre o polímero e a aplicação é:

(A) I - O; II - P; III - M; IV - Q; V - N

(B) I - Q; II - O; III - N; IV - M; V - P

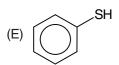
(C) I - N; II - M; III - O; IV - P; V - Q

(D) I-P; II-N; III-Q; IV-O; V-M

(E) I - M; II - Q; III - P; IV - N; V - O

BR PETROBRAS =

36

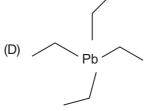

Cátions pequenos possuem alto poder polarizante, pois seus centros de cargas exercem forte atração sobre os elétrons mais externos do ânion, devido à pequena distância que os separa. Dentre os cátions abaixo, aquele que apresenta o maior poder polarizante é o:

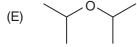
- (A) Na⁺¹
- (B) B⁺³
- (C) Mg⁺²
- (D) Al⁺³
- (E) K⁺¹

37

Os petróleos são constituídos por uma fração majoritária hidrocarbônica e por uma fração minoritária que contém compostos com N, O, S e metais. Dentre os compostos sulfurados já detectados em petróleos, destacam-se os sulfetos, dissulfetos, tióis, tiofenos e tiofenóis, exemplificados abaixo. Dentre estes, o mais ácido é o:






38

Para aumentar a octanagem da gasolina, é comum o uso de aditivos antidetonantes. Qual dos agentes antidetonantes abaixo apresenta forças intermoleculares de maior intensidade?

39

Considere o esquema abaixo, que representa uma das rotas de produção industrial de estireno.

$$CH_2 = CH_2 +$$

$$CH_2 = CH_2 +$$

$$CH_2 = CH_2 +$$

$$AlCl_3/HC\ell$$

$$(Reação 1)$$

$$(Reação 2)$$

A respeito dessa síntese, é correto afirmar que a(o):

- (A) reação 1 corresponde a uma substituição nucleofílica.
- (B) reação 2 é favorecida pelo aumento de pressão.
- (C) reação 2 corresponde a uma redução.
- (D) AICI, atua como uma Base de Lewis na reação 1.
- (E) o aumento de temperatura favorece a polialquilação na reação 1.

40

O cromo, elemento pertencente ao grupo 6 da Classificação Periódica, forma diversos óxidos. Em relação ao comportamento químico dos óxidos desse metal, é correto afirmar que o:

- (A) CrO é um óxido anfótero.
- (B) Cr₂O₃ é um óxido ácido.
- (C) CrO₅ é um peróxido.
- (D) CrO₂ é um óxido básico.
- (E) CrO₃ é um óxido misto.

41

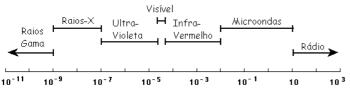
Considere as soluções abaixo, mantidas a 30 °C.

- I Solução de 0,1 mol de NaCℓ em 1 kg de água.
- Solução de 0,1 mol de etilenoglicol (HOCH₂ CH₂OH) em 1 kg de água.
- III Solução de 0,1 mol de sacarose ($C_{12}H_{22}O_{11}$) em 1kg de água.

A respeito das propriedades coligativas dessas soluções, é correto afirmar que a:

- (A) temperatura de congelamento de I é superior à de II.
- (B) temperatura de congelamento de II é superior à da água pura.
- (C) temperatura de ebulição de I é inferior à da água pura.
- (D) pressão de vapor de l é menor que a pressão de vapor da água pura.
- (E) pressão osmótica de I é igual à pressão osmótica de III.

Os cromatos são inibidores de corrosão muito utilizados em sistemas de refrigeração de água e salmouras refrigerantes. A presença do cromato em uma tubulação à base de ferro leva à formação de um filme de ${\rm Fe_2O_3-Cr_2O_3}$, protegendo a superfície metálica, segundo a reação não-balanceada abaixo.


$$\mathsf{Fe} + \mathsf{Na}_2 \mathsf{CrO}_4 + \mathsf{H}_2 \mathsf{O} \ \longrightarrow \ \mathsf{Fe}_2 \mathsf{O}_3 + \mathsf{Cr}_2 \mathsf{O}_3 + \mathsf{NaOH}$$

Na reação de oxirredução balanceada, é correto afirmar que o(a):

- (A) número de mols de elétrons envolvidos é 6.
- (B) agente redutor é o Na₂CrO₄.
- (C) agente oxidante é o Fe.
- (D) cromato age como um inibidor catódico.
- (E) soma dos coeficientes mínimos é 10.

43

Considere o espectro eletromagnético representado abaixo.

Comprimento de onda (cm)

A respeito de uma radiação eletromagnética cujo comprimento de onda é de 3 x 10⁴ nm, é correto afirmar que:

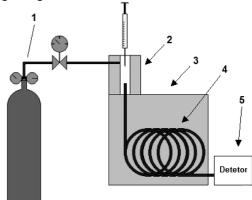
(Dados: $c = 3 \times 10^8 \text{ m/s}$; $c = \lambda. v$)

- (A) essa radiação pertence à faixa de luz visível.
- (B) sua freqüência é de 10⁸ Hz.
- (C) sua freqüência é superior à dos raios-X.
- (D) sua energia é inferior à da radiação de microondas.
- (E) sua energia é diretamente proporcional à sua freqüência.

44

Para monitorar a contaminação de um rio próximo a uma região industrial, foi determinada a concentração de zinco em cinco amostras de água colhidas em pontos distintos do rio. Sabendo-se que o padrão de potabilidade da água exige um limite máximo de 5,0 mg/L para esse metal, qual das amostras abaixo apresenta um teor de zinco dentro do limite permitido? (Dados: massa molar do Zn = 65 g/mol)

	Amostra	Teor de zinco
(A)	I	0,001%
(B)	II	10 ppm
(C)	III	7.500 ppb
(D)	IV	8 μg/mL
(E)	V	0,05 mmol/L


45

A fumaça eliminada nas chaminés das fábricas é uma dispersão coloidal do tipo aerossol. Uma das medidas utilizadas para o controle da poluição ambiental consiste na instalação de dois eletrodos nas chaminés, estabelecendo uma diferença de potencial capaz de ionizar o gás que está sendo emanado. As partículas do disperso da fumaça adsorvem íons do gás e migram para os eletrodos. O princípio de funcionamento desse equipamento consiste em:

- (A) eliminar a carga elétrica das partículas do disperso, favorecendo sua precipitação.
- (B) eliminar a camada de solvatação, favorecendo a aglomeração das partículas do disperso.
- (C) eliminar impurezas iônicas que contaminam a dispersão coloidal por meio de eletrodiálise.
- (D) distribuir a carga elétrica uniformemente pelo colóide, favorecendo sua estabilização.
- (E) destruir aglomerados do disperso, facilitando sua solubilização no dispersante.

46

Considere a figura abaixo, que representa esquematicamente os componentes de um sistema de separação por cromatografia gasosa.

A respeito do funcionamento desta técnica, foram feitas as afirmações a seguir.

- I Os componentes 2, 3 e 5 devem ser mantidos sob rígido controle de temperatura.
- II O componente 1 pode utilizar hélio, hidrogênio ou nitrogênio.
- III O componente 4 é a coluna cromatográfica e sua escolha depende da natureza da amostra a ser separada.
- IV-O componente 5 pode utilizar ionização em chama, condutividade térmica e fotometria de chama, entre outros métodos.

Estão corretas as afirmações:

- (A) I e II, apenas.
- (B) I e III, apenas.
- (C) II e III, apenas.
- (D) II, III e IV, apenas.
- (E) I, II, III e IV.

Admitindo um comportamento de gás ideal, qual o volume aproximado de CO₂, em m³, nas condições normais de temperatura e pressão, que um extintor de incêndio contendo 4,4 kg de CO₂ pode liberar?

(Dados: $R = 8,31 \times 10^3 \text{ Pa.L.mol}^{-1}$. K⁻¹; CNTP: Pressão = 10^5 Pa ; temperatura = 273 K)

- (A) 2,3
- (B) 3,2
- (C) 4,0
- (D) 4,8
- (E) 5,5

48

Uma das aplicações das reações nucleares consiste na determinação de vazamentos em oleodutos. Adicionando-se um isótopo radioativo ao fluido, é possível monitorar seu fluxo e, por meio de um Contador Geiger, localizar vazamentos. Sabendo-se que o radioisótopo deve ser um emissor β , qual dos núcleos pai relacionados abaixo seria recomendado para esse fim?

	Núcleo pai	Núcleo filho	t _{1/2}
(A)	₉₀ Th ²²⁷	₈₈ Ra ²²³	18,5 dias
(B)	P ³⁰	₁₄ Si ³⁰	2,6 minutos
(C)	₁₁ Na ²⁴	₁₂ Mg ²⁴	15 horas
(D)	₃₈ Sr ⁹⁰	₃₉ Y ⁹⁰	29,1 anos
(E)	85At ²¹⁶	₈₃ Bi ²¹²	3 x 10 ⁻⁴ segundos

49

Magnetos permanentes são produzidos a partir de materiais ferromagnéticos.

PORQUE

Um poderoso campo magnético é gerado por espécies que possuem elétrons desemparelhados com *spins* alinhados.

Em relação ao exposto acima, conclui-se que:

- (A) as duas afirmações são verdadeiras e a segunda justifica a primeira.
- (B) as duas afirmações são verdadeiras e a segunda não justifica a primeira.
- (C) a primeira afirmação é verdadeira e a segunda é falsa.
- (D) a primeira afirmação é falsa e a segunda é verdadeira.
- (E) as duas afirmações são falsas.

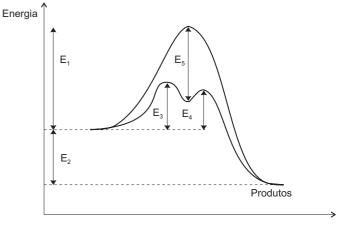
50

A respeito dos processos de fissão e fusão nucleares para produção de energia, é correto afirmar que a(o):

- (A) fissão nuclear induzida é aquela causada pelo bombardeamento de núcleos pesados com elétrons.
- (B) massa crítica é a menor massa de uma substância fissionável capaz de sustentar uma reação em cadeia.
- (C) reação de fissão nuclear libera mais energia por unidade de massa que a reação de fusão nuclear.
- (D) principal desvantagem da fusão nuclear é a produção de lixo radioativo.
- (E) moderador é uma substância utilizada em reatores de fusão nuclear para reduzir a velocidade dos nêutrons liberados do material físsil.

51

Considere a transformação do ${\rm SO}_2$ em ${\rm SO}_3$, através de dois caminhos distintos de reação, representados abaixo.

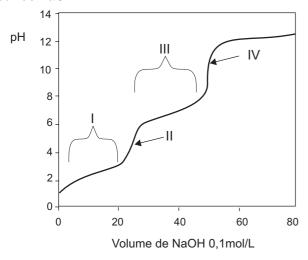

Caminho 1:

Etapa I: $2 SO_2(g) + 2 NO_2(g) \longrightarrow 2 SO_3(g) + 2 NO(g)$

Etapa II: $2 \text{ NO(g)} + \text{O}_2(g) \longrightarrow 2 \text{ NO}_2(g)$

Caminho 2:

$$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$$



Caminho da reação

A respeito dessa transformação, é correto afirmar que:

- (A) o NO_2 é o catalisador e essa reação é endotérmica, pois $E_1 > E_2$.
- (B) a reação não necessita de catalisador, pois $E_4 < E_3$.
- (C) E₁ E₂ é a variação da entalpia da reação, que é exotérmica.
- (D) $E_1 E_3$ é o abaixamento da energia de ativação devido ao catalisador.
- (E) E₁ E₅ é a energia de ativação da reação com o catalisador.

A curva de titulação representada abaixo foi obtida na neutralização total de um ácido fraco $\rm H_2A$ com solução 0,1 mol/L de NaOH.

Analisando o gráfico, é correto afirmar que:

- (A) na região I, a concentração da espécie H₂A é sempre maior que a da espécie HA⁻¹.
- (B) na região III, a concentração da espécie HA⁻¹ é sempre menor que a da espécie A⁻².
- (C) nas regiões I e III, as espécies presentes formam uma solução tampão.
- (D) no ponto II, a concentração da espécie HA^{-1} é nula.
- (E) no ponto IV, a concentração da espécie A $^{-2}$ é igual à da espécie ${\rm HA}^{-1}$.

53

Considere as seguintes pilhas e suas reações:

- Pilha de Níquel-cádmio: Cd(s) + 2 NiO(OH)(s) + $2H_2O(\ell)$ \longrightarrow Cd(OH)₂(s) + 2 Ni(OH)₂(s)
- Pilha de Combustível: $2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell)$
- Pilha de Mercúrio: $Zn(s) + HgO(s) \longrightarrow ZnO(s) + Hg(\ell)$

A respeito do mecanismo de produção de corrente elétrica nessas pilhas, é correto afirmar que na pilha de:

- (A) mercúrio, o anodo é o HgO.
- (B) mercúrio, o agente redutor é o ZnO.
- (C) combustível, o hidrogênio é oxidado no anodo.
- (D) níquel-cádmio, o catodo é o Cd.
- (E) níquel-cádmio, o agente oxidante é o Cd.

54

Um litro de solução de ácido clorídrico de pH 1 teve seu meio ajustado para pH 2, através de uma solução 0,01 mol/L de NaOH. Que volume da solução alcalina, em litros, deverá ser adicionado?

- (A) 4,5
- (B) 3,0
- (C) 2,5
- (D) 1,5
- (E) 0.5

55

Em uma análise gravimétrica, foram feitas as seguintes recomendações sobre as condições de precipitação:

- I a precipitação deve ser conduzida em solução diluída;
- II os reagentes devem ser misturados lentamente, com agitação constante;
- III a precipitação deve ser efetuada em soluções frias, sempre que for possível;
- IV-precipitados cristalinos devem ser digeridos;
- V o precipitado deve ser lavado com solução diluída de um eletrólito.

Estão corretas as recomendações:

- (A) I e III, apenas.
- (B) II e IV, apenas.
- (C) II, III e IV, apenas.
- (D) I, II, IV e V, apenas.
- (E) I, II, III, IV e V.

56

Antes de se realizar a medida do pH de uma solução aquosa com um eletrodo combinado de vidro do tipo prata/cloreto de prata, este deve ser imerso em duas ou mais soluções aquosas que possuam valores de pH estabelecidos.

PORQUE

O meio aquoso evita a desidratação da superfície da membrana de vidro do eletrodo.

Em relação ao exposto acima, conclui-se que:

- (A) as duas afirmações são verdadeiras e a segunda justifica a primeira.
- (B) as duas afirmações são verdadeiras e a segunda não justifica a primeira.
- (C) a primeira afirmação é verdadeira e a segunda é falsa.
- (D) a primeira afirmação é falsa e a segunda é verdadeira.
- (E) as duas afirmações são falsas.

BR PETROBRAS =

57

Considere a seguinte pilha e seus respectivos potenciais padrão de redução:

$$Cd(s) | CdCl_2(aq) | | AgNO_3(aq) | Ag(s)$$

 $Ag^{+1} / Ag^0 (E^0 = + 0.80V)$
 $Cd^{+2} / Cd^0 (E^0 = - 0.40V)$

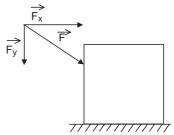
A força eletromotriz dessa pilha, em volts, é:

- (A) + 0.40
- (B) + 2,00
- (C) + 1,20
- (D) 1,20
- (E) 0.40

58

A respeito da radiação eletromagnética compreendida entre as regiões do ultravioleta e do visível e de suas aplicações como método quantitativo de análise, é correto afirmar que:

- (A) a concentração de um composto é diretamente proporcional à trajetória do feixe através da célula da amostra.
- (B) a quantidade da radiação absorvida depende essencialmente da estrutura do composto e do comprimento de onda da radiação.
- (C) a intensidade do feixe que incide sobre a cubeta contendo a amostra é maior do que a intensidade do feixe que incide sobre a cubeta de referência.
- (D) quando uma molécula absorve luz, um elétron é excitado do orbital molecular vazio de mais baixa energia (LUMO) para o orbital molecular ocupado de mais alta energia (HOMO).
- (E) quanto maior for o número de ligações múltiplas conjugadas de um composto, menor será o comprimento de onda em que o composto absorverá energia.


59

Um atleta, ao participar de uma maratona, percorreu a distância de 42.195 m em 2,50 h. Em notação científica, quantos metros o atleta percorreu por minuto?

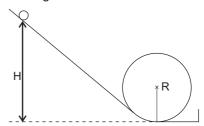
- (A) 248,2
- (B) 281,3
- (C) $2,48 \times 10^2$
- (D) 2,81 x 10²
- (E) 2.813×10^{2}

60

Uma força \vec{F} age sobre um bloco de 5 kg e tem como componentes $\vec{F}_x = 30 \text{ N e } \vec{F}_y = 40 \text{ N}$, conforme representado na figura abaixo.

Desprezando o atrito entre o bloco e o solo, o módulo da aceleração e o ângulo que a força resultante $\vec{\mathsf{F}}$ faz com o bloco são dados, respectivamente, por:

- (A) $6 \text{ m/s}^2 \text{ e arc tg } 0.80$
- (B) 6 m/s² e arc tg 1,33
- (C) $8 \text{ m/s}^2 \text{ e arc tg } 1,33$
- (D) $10 \text{ m/s}^2 \text{ e} \text{ arc tg } 1,33$
- (E) $10 \text{ m/s}^2 \text{ e arc tg } 0.80$


61

Se estacionarmos um carro sem deixar o freio acionado em uma rua em declive, o veículo descerá espontaneamente a ladeira. Desprezando a resistência do ar, o movimento do carro ocorre em função:

- (A) do trabalho realizado apenas pela força peso.
- (B) do trabalho realizado apenas pelas forças peso e atrito.
- (C) do trabalho realizado pelas forças peso, atrito e normal.
- (D) de a força resultante ter gerado um trabalho negativo.
- (E) de a força resultante ter gerado um trabalho nulo.

62

Um estudante do curso técnico leva seu experimento a uma feira de ciências. Trata-se de um trilho que termina em um *looping* conforme figura abaixo.

(Dados: aceleração da gravidade = 10 m/s²)

A experiência consiste em determinar a altura mínima H, onde deve ser colocada uma pequena esfera para que ela realize um *looping* completo de raio R. Considerando que o atrito é nulo, a relação entre a altura mínima H e o raio R é dada por:

- (A) H = 1.5 R
- (B) H = 2 R
- (C) H = 2.5 R
- (D) H = 3 R

(E) H = 4 R

BR PETROBRAS

63

Um submarino, cuja massa é de 400 t e o volume é de $1.200\,\mathrm{m}^3$, encontra-se ancorado, em equilíbrio, no cais. Qual a fração do volume do submarino que se encontra submersa? (Dados: densidade da água do mar = $10^3\,\mathrm{kg/m}^3$; aceleração da gravidade = $10\,\mathrm{m/s}^2$)

(A) 1/2

(B) 1/3

(C) 1/5

(D) 2/3

(E) 3/5

64

Um técnico químico recebeu um procedimento experimental para ser executado no laboratório. O processo envolve duas etapas: na etapa I, a temperatura deve ser mantida a $104\,^{\circ}$ F e, na etapa II, a $265\,$ K. A razão entre as temperaturas das etapas I e II, na escala Celsius, corresponde a:

(A) - 5,0

(B) - 3,5

(C) - 1,5

(D) 2.0

(E) 6,5

65

Em um calorímetro de capacidade térmica desprezível foram misturados água e álcool, na proporção mássica de 3:5. A água encontrava-se à temperatura de 40 °C e o álcool, à temperatura de 10 °C. Qual a temperatura final de equilíbrio da mistura, em graus Celsius?

(Dados: calor específico do álcool = 0 ,6 cal/g $^{\circ}$ C ; calor específico da água = 1,0 cal/g $^{\circ}$ C)

(A) 35

(B) 30

(C) 28

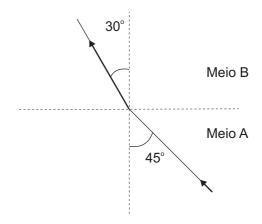
(D) 25

(E) 20

66

Três corpos de materiais distintos e massas diferentes são colocados num recipiente termicamente isolado. Os corpos estão a uma distância **d** entre si, e não trocam calor com o meio ambiente. Após algum tempo eles atingem o equilíbrio térmico no interior do recipiente. A respeito da transferência de calor é correto afirmar que:

- (A) ao atingir o equilíbrio, a capacidade térmica dos corpos é nula.
- (B) ao atingir o equilíbrio, a condutibilidade térmica dos corpos se iguala.
- (C) a troca térmica se deu, principalmente, por convecção.
- (D) a troca térmica se deu, principalmente, por condução.
- (E) a troca térmica se deu, principalmente, por radiação.


67

Películas de óleo sobre a água ou bolhas de sabão podem apresentar-se coloridas devido à:

- (A) polarização da luz.
- (B) ressonância luminosa.
- (C) refração da onda luminosa.
- (D) difração da onda luminosa.
- (E) interferência de ondas luminosas.

68

Considere a propagação de um feixe de luz monocromática, passando do meio **A** para o meio **B**, segundo o ângulo de incidência mostrado na figura abaixo.

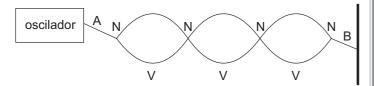
A respeito das velocidades de propagação (v_i) dessa luz e dos índices de refração dos meios (n_i), é correto afirmar que:

$$(A) n_{\Delta} < n_{R}$$

(B)
$$n_A > n_B$$

(C)
$$n_A = n_B$$

(D)
$$V_B = V_A$$


(E)
$$V_B > V_A$$

69

A miopia caracteriza-se por uma diminuição na distância focal, pois o ponto remoto do míope se encontra a uma distância finita do olho. Assim, a imagem de um objeto infinitamente afastado se forma antes da retina, prejudicando a visão de objetos situados ao longe. As lentes indicadas para a correção da miopia são as do tipo:

- (A) biconvexa.
- (B) convergente.
- (C) côncavo-convexa.
- (D) divergente.
- (E) plano-convexas.

A figura abaixo representa uma configuração de ondas estacionárias em uma corda.

A extremidade **A** está presa a um oscilador que vibra com pequena amplitude. A extremidade **B** é fixa, e a tração na corda é constante. Na situação da figura, onde aparecem três ventres (V) e quatro nós (N), a freqüência do oscilador é 360 Hz. Aumentando-se a freqüência do oscilador para 480 Hz, observa-se uma nova configuração de ondas estacionárias formada por:

- (A) 4 nós e 4 ventres.
- (B) 4 nós e 5 ventres.
- (C) 5 nós e 4 ventres.
- (D) 5 nós e 5 ventres.
- (E) 6 nós e 8 ventres.

	_				CLA	SSI	CLASSIFIC/	AÇÃC) PER	IÓDI	AÇÃO PERIÓDICA DOS ELEMENTOS	S ELEI	MENT	SC							48	
ı	Δ	<i>-</i>				Con	Com mass	as atôn	nicas ref	eridas a	as atômicas referidas ao isótopo 12 do carbono	12 do cai	rbono							l	>	VIIIA
_	□ ¬	7												_	13	4	15	16		17 HÉLIO	He 5	
	₫ 1,0079	¥I	_												HIA	IVA		W W	VIA	VIIA		9
7	3 ☐ Li 6,941(2)	ВЕРІГІО 4 9,0122												ояов 10,6	5 В 10,811(5)	6 C 12,011	7 N N 14,007	OXIGÊNIO	8 O 15,999	о Н 8,998		0
က	22,990	мьеиёяю 24,305	8	4 87	2	Q 8 VB	8 8	7 VIIB	8	တ	10	7	12	OINIMINA	13 A 26,982	14 Si 28,086	15 P P P P 10,050 10,074	ENXOFRE	16 S 32,066(6)	17 О 35,453	18 Ar 39,948	80
4	01828 TO9 39,098	20 ck Ca 40,078(4)	21 SCANDIO 21 44,956	оіматіт П 22 18,74	23 VANÁDIO VAN	СВОМІО	24 Сг 51,996	25 X	26 E Fe 55,84	COBALTO 27	28 Niguet 58,6	29 совяе 63,546(30 NNCO Zn 65,39(2	еугіо	31 Ga 69,723	32 Ge 72,61(2)	33 ARSENIO AS 74,922	SELÊNIO	34 Se BROMO 78,96(3)	35 Br 79,904	1	
2	37 BB Rb 85,468	38 Sr,62	39 Y 88,906	40 SE Zr NR 91,224(2)	міо́віо Nb 92,906	MOLIBDÉNIO	42 MO 95,94	43 TC 98,906	2 44 BU 101,07(2)	45 RÓDIO Rh 102,91	46 Pd Add 106,42	ATAЯЧ	сурміо Сф 112,41	olani — E	49 HO ESTRAHO	50 Sn 118,71	51 SP AZ 121,76	оіяйлэт —	ODOI	53 	-	(2)
9	55 CESSION CS 132,91	56 ВАRIO 137,33	57a71 La-Lu	72 EF Hf 178,49(2)	23 Тапатийт 180,95	TUNGSTÊNIO ,	74 W RENO RESIGNATION RESISTANCE RES	75 Re 186,21	76 SS OS 190,23(3)	77	78 FINE Pt 195,08(3)	79 Au 196,97	80 МЕКСОЙ Нд 200,59(2)	ОІТЎТ	204,38 CHUMBO	82 Pb 207,2	83 B ismuto 83 208,98	DOFQNIO	009,98 OTATZA	85 At 209,99		75
_	87 FR Fr 223,02	88 RED 226,03	89 a 103 Ac-Lr	опакораріо 104 261	105 рύвию 262	SEABÓRGIO	106 Sg	107 BB Bh	оізган Т	меітиёкіо Т09	оилиппо 140	оиойиои Ста	оийивіо Uub									

			_
	71 Lu 174,97		103 Lr 262,11
	(S) 0103TUJ		LAURÉNCIO
	70 TÉRBIO 70 173,0		102 NOBÉLIO 259,
	69 Tm 168,93		101 VId 258,10
	01JÙT 8		% ≤ →
	68 Er 57,26(3)		100 Fm 257,10
	OIBA3		ω FÉRMIO
	67 Ho 164,93		99 ES 252,0
	ногиіо (3)		EINSTÉINIO
	e6 Dy 162,50		98 Cf
	DISPRÓSIO		САСІЕОЯИЮ
	65 Tb		97 BK 249,0
	(S) 01893T		BERQUÉLIO
	64 Gd 157,25		96 Cm 244,06
	емрогіию		С 80
	63 E Eu 151,96		95 Americio 241,0
	(S) EURÓPIO		- 60 90 90 90 90 90 90 90 90 90 90 90 90 90
	62 Sn 150,3		239,
	OIRÁMAS		OS PLUTÔNIO
	61 Pm 146,92		93 Np 237,0
	PROMÉCIO		ON NETÚNIO
	60 Nd 144,24(3)		92 U
	59 Pr NEODÍMIO 40,91		- Ф -
S	59 PRASEODÍMIO 59 PRASEODÍMIO 59 PRASEODÍMIO		оіиітэатояч С С 60, 12, 23, 23, 20, 12, 23, 20, 23, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
ınídio	58 Ce 140,12	dios	90 Th 232,04
Lanta	оія О 4	Actiní	оіяо́т — 232
Série dos Lantanídios	57 La 138,91	Série dos Actinídios	89 AC 227,03
Série	OINÂTNAJ	Série	OINÌTDA 9
	9		_
	ico		<u>ica</u>
	Atôn	ímbolo	Atôm
	Número Atômico	Síml	Massa Atômica
	Nú	•,	Ĕ

NOME DO ELEMENTO

Massa atômica relativa. A incerteza no último dígito é±1, exceto quando indicado entre parênteses.