

MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA E COMÉRCIO EXTERIOR

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL - INMETRO

Leia com atenção as instruções abaixo.

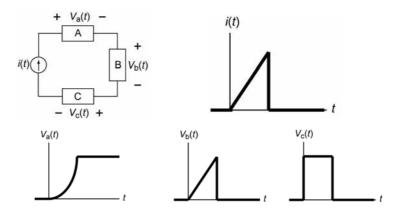
- 1 Confira atentamente o seu caderno de provas objetivas, que é constituído de duas provas, da seguinte forma:
 - Conhecimentos Básicos, com 30 questões, ordenadas de 1 a 30.
 - Conhecimentos Específicos, com 40 questões, ordenadas de 31 a 70.
- 2 Quando autorizado pelo chefe de sala, no momento da identificação, escreva, no espaço apropriado da folha de respostas, com a sua caligrafia usual, a seguinte frase:

O descumprimento dessa instrução implicará a anulação das suas provas e a sua eliminação do concurso.

- Confira atentamente os seus dados pessoais e os dados identificadores de seu cargo/área, transcritos acima, com o que está registrado em sua folha de respostas. Confira também o seu nome, o nome e o número de seu cargo/área no rodapé de cada página numerada do seu caderno de provas. Caso o caderno esteja incompleto, tenha qualquer defeito, ou apresente divergência quanto aos seus dados pessoais ou aos dados identificadores de seu cargo/área, solicite ao fiscal de sala mais próximo que tome as providências cabíveis, pois não serão aceitas reclamações posteriores nesse sentido.
- Não se comunique com outros candidatos nem se levante sem autorização de fiscal de sala.
- Na duração das provas, está incluído o tempo destinado à identificação que será feita no decorrer das provas e ao preenchimento da folha de respostas.
- Ao terminar as provas, chame o fiscal de sala mais próximo, devolva-lhe a sua folha de respostas e deixe o local de provas.
- A desobediência a qualquer uma das determinações constantes em edital, no caderno de provas ou na folha de respostas poderá implicar a anulação das suas provas.

OBSERVAÇÕES

- Informações adicionais: telefone 0(XX) 61 3448-0100; Internet www.cespe.unb.br. É permitida a reprodução deste material apenas para fins didáticos, desde que citada a fonte

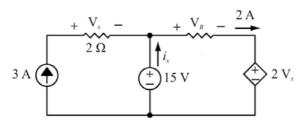


Nas questões de **31** a **70**, marque, para cada uma, a única opção correta, de acordo com o respectivo comando. Para as devidas marcações, use a **folha de respostas**, único documento válido para a correção das suas provas.

CONHECIMENTOS ESPECÍFICOS

QUESTÃO 31

No circuito a seguir, as seguintes curvas de corrente — i(t) — e tensão — $V_a(t)$, $V_b(t)$ e $V_c(t)$ — foram medidas nos elementos indicados pelas letras A, B e C.



Com base nas curvas representativas dessas medidas, e sabendo-se que se trata de um circuito RLC em série, é correto afirmar que os elementos A, B e C, são, respectivamente,

- **a** um capacitor, um indutor e um resistor.
- **3** um capacitor, um resistor e um indutor.
- um indutor, um capacitor e um resistor.
- um indutor, um resistor e um capacitor.
- **9** um resistor, um capacitor e um indutor.

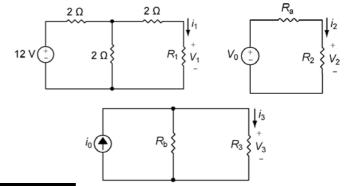
Texto e figura para as questões 32 e 33

No circuito a seguir, o valor da resistência R é desconhecido.

QUESTÃO 32

No circuito considerado, o valor da corrente i_x , em ampere (A), é igual a

- **△** -5.
- **③** −1.
- **9** 1.
- **o** 5.
- **3** 6.


QUESTÃO 33

No circuito em questão, a tensão $V_{\rm R}$, em volt (V), é igual a

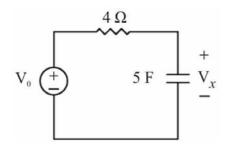
- **a** 3.
- **3** 4*R*.
- **\Theta** -R/2.
- **O** -2R.
- **3** −3.

Texto e figura para as questões 34 e 35

Acerca dos circuitos a seguir, considere que $R_1 = R_2 = R_3$, que $V_1 = V_2 = V_3$ e que $i_1 = i_2 = i_3$.

QUESTÃO 34

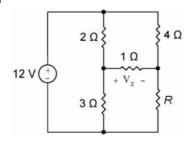
A tensão V_0 , em volt, é igual a


- **△** -6.
- **③** −2.
- **Q** 2.
- 6.4.

QUESTÃO 35

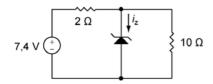
A corrente i_0 , em ampere, é igual a

- \bullet -2.
- **③** −1.
- **9** 1.
- **o** 2.
- **3** 4.

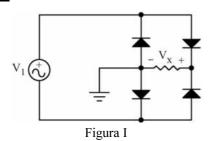

No circuito a seguir, $V_0(t) = 3 \ u(t) + 2$, em que u(t) é a função degrau unitário e V_0 é dado em volt.

Considerando-se essas informações, para t > 0, $V_{\mathbf{x}}(t)$, em volt, é igual a

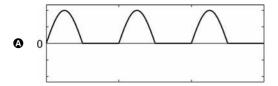
- **a** $2+3e^{-3t/2}$.
- **B** $3-2 e^{-t/20}$.
- Θ 3+5 e^{-5t/4}.
- **o** $5-2e^{-t/6}$.
- **9** $5-3e^{-t/20}$.


QUESTÃO 37

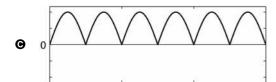
Se, no circuito acima, a tensão V_{x} for nula, então a resistência R, em ohms, será igual a

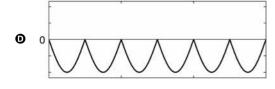

- **a** 3/8.
- **B** 2/3.
- **9** 3/2.
- **o** 8/3.
- **6**.

QUESTÃO 38

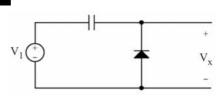

O diodo Zener, utilizado no circuito acima, tem tensão de ruptura igual a 6 V. Considerando-se que o diodo esteja operando na região de ruptura, é correto afirmar que a corrente i_z será igual a

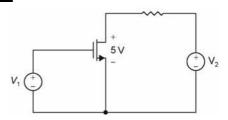
- \bullet -1,3 A.
- **❸** -100 mA.
- **9** 100 mA.
- **1**,3 A.
- **3**,7 A.





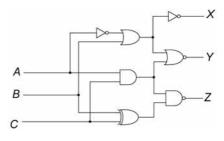
As figuras I e II acima mostram, respectivamente, um circuito e o gráfico da forma de onda da tensão V_1 . Considerando os diodos ideais, assinale a opção que apresenta o gráfico que melhor esboça a forma de onda da tensão V_x .




QUESTÃO 40

No circuito acima, a tensão $V_1(t)$ corresponde a uma onda quadrada, chaveando entre –14 V e +6 V. O *duty cycle* é de 50%, isto é, a fase positiva da onda tem duração igual à da fase negativa. Nessa situação, a tensão $V_x(t)$, em volt, corresponde a uma onda quadrada chaveando entre

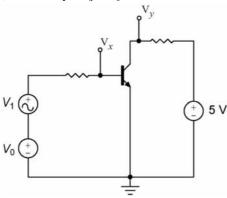
- \bullet -20 e 0.
- **❸** -14 e 0.
- Θ -10 e +10.
- **0** e +6.
- **9** 0 e +20.


QUESTÃO 41

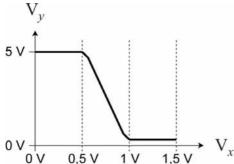
Suponha que, no transistor do circuito acima, a tensão entre dreno e fonte seja de 5 V e a tensão de limiar do transistor, de 2 V. Com base nessas informações, assinale a opção que apresenta corretamente os valores de V_1 , em volt, que fariam o transistor operar nas regiões de corte, triodo e saturação, respectivamente.

- **a** 1, 5 e 10
- **3** 1, 10 e 5
- **9** 5, 1 e 10
- **1**0, 1 e 5
- **3** 10, 5 e 1

QUESTÃO 42



Considerando-se que as entradas do circuito acima sejam A=1, B=1 e C=0, é correto concluir que as saídas X, Y e Z serão, respectivamente, iguais a

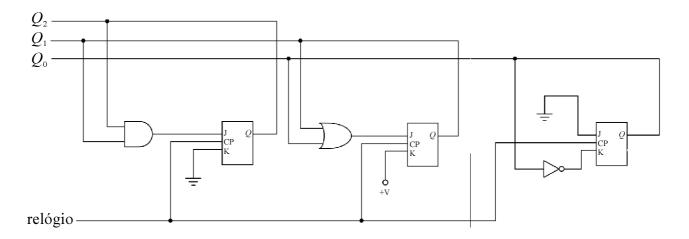

- **a** 0, 0 e 1.
- **3** 0, 1 e 0.
- **9** 1, 0 e 1.
- **1**, 1 e 0.
- **9** 1, 1 e 1.

Texto e figura para as questões 43 e 44

No circuito a seguir, a tensão pico a pico da fonte senoidal V_1 é muito menor que a tensão da fonte V_0 , de corrente contínua. Além disso, a queda de tensão no resistor conectado à base é desprezível, de modo que $V_x \approx V_0$.

A curva característica de transferência do transistor do circuito acima, medida entre os terminais V_x e V_y , é esboçada a seguir.

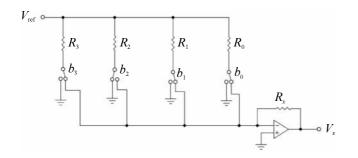
QUESTÃO 43


Para que o transistor possa ser usado como um amplificador do sinal senoidal V_1 , a fonte de corrente contínua V_0 deve ter, em volt, um valor de tensão entre

- **a** 0 e 0,5.
- **3** 0 e 1.
- **9** 0,5 e 1.
- **0** 0,5 e 1,5.
- **1** e 1,5.

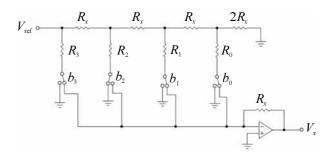
QUESTÃO 44

Acerca do circuito apresentado, assinale a opção correta.

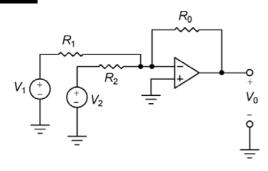

- **O** Se o transistor está operando em modo de corte, então V_y é aproximadamente igual a 5 V.
- **9** Se o transistor está operando em modo de saturação, então V_y é aproximadamente igual a V_0 .
- **oldsymbol{\Theta}** Se o transistor está operando em modo de saturação, ele pode ser usado como um amplificador do sinal senoidal V_1 .
- Para que o transistor opere como chave, ele deve ser mantido em modo de corte ou em modo linear.
- **6** O transistor utilizado no circuito é do tipo *pnp*.

No circuito acima, os três *flip-flops* JK estão apropriadamente alimentados, habilitados e ligados corretamente a um sinal sincronizador, denominado relógio, e os valores iniciais de Q_2 , Q_1 e Q_0 são iguais a 1, 1 e 0, respectivamente. A partir dessas informações, é correto afirmar que, após um ciclo completo de relógio, os valores de Q_2 , Q_1 e Q_0 serão iguais, respectivamente, a

- **a** 0, 0 e 1.
- **3** 0, 1 e 0.
- **9** 0, 1 e 1.
- **0** 1, 0 e 0.
- **3** 1, 1 e 1.


QUESTÃO 46

No circuito acima, as chaves lógicas são controladas pelos *bits* individuais de uma palavra binária B de 4 bits, b_3 , b_2 , b_1 e b_0 , dos quais o b_3 é o mais significativo. O valor da tensão analógica V_x , em volts, é diretamente proporcional ao valor numérico da palavra B. Uma vez definido o valor da resistência R_3 , é correto afirmar que as resistências R_2 , R_1 e R_0 são, respectivamente, iguais a

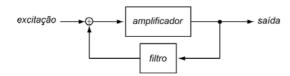

- \mathbf{Q} $R_3/2$, $R_3/4$ e $R_3/8$.
- **B** $R_3/2$, R_3 e $R_3/2$.
- **\Theta** R_3 , R_3 e R_3 .
- **0** $2R_3$, R_3 e $2R_3$.
- **3** $2R_3$, $4R_3$ e $8R_3$.

QUESTÃO 47

No circuito acima, as chaves lógicas são controladas pelos *bits* individuais de uma palavra binária B de 4 bits, b_3 , b_2 , b_1 e b_0 , dos quais o b_3 é o mais significativo. O valor da tensão analógica V_x , em volts, é diretamente proporcional ao valor numérico da palavra B. Uma vez definido o valor da resistência R_x , é correto afirmar que as resistências R_3 , R_2 , R_1 e R_0 são, respectivamente, iguais a

- **a** $2R_{r}$, $2R_{r}$, $2R_{r}$ e $2R_{r}$.
- $2R_x, R_x, 2R_x e R_x.$
- Θ R_x , R_y , R_y e $2R_x$.
- $\mathbf{O} \quad R_{x}, R_{x}, R_{x} \in R_{x}.$
- **a** $R_{1}/2$, $R_{2}/2$, $R_{3}/2$ e $R_{3}/2$.

Sabendo-se que o amplificador operacional no circuito acima é ideal, é correto concluir que a tensão V_0 é igual a


$$\bullet \quad -\frac{R_1 R_2}{R_0} (V_1 + V_2) \ .$$

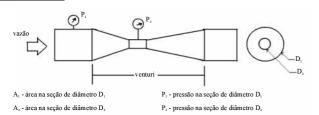
$$\bullet \quad \frac{(R_1 v_1 + R_2 V_2)}{R_0} \, .$$

$$\bullet \quad \frac{R_0}{R_1 R_2} (V_1 - V_2) \ .$$

$$\bullet \quad \frac{R_1 R_2}{R_0} (V_2 - V_1) \ .$$

QUESTÃO 49

Considerando-se o circuito representado pelo diagrama de blocos acima como um oscilador senoidal, é correto afirmar que o bloco rotulado filtro implementa um filtro do tipo


- passa-baixas.
- passa-altas.
- passa-faixa.
- rejeita-faixa.
- passa-tudo.

QUESTÃO 50

$$H(s) = \frac{(s-3)(s+2)(s-5)}{(s+3)(s-1)(s+4)}$$

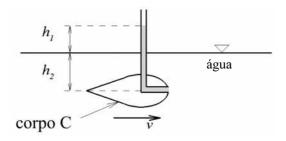
O sistema representado pela função de transferência H(s) acima, no domínio da variável complexa s da transformada de Laplace, tem polos em

- **△** -5, -3 e 2.
- **❸** -4, -3 e 1.
- Θ -2, -5/4 e -1.
- **●** -2, 3 e 5.

Considerando-se que água com massa específica P escoe no interior de uma canalização horizontal, como esquematizado na figura acima, e que um tubo Venturi seja usado para se medir a vazão, e admitindo-se que esse escoamento seja permanente, incompressível e invíscido, então o valor da vazão ideal Q será igual a

$$Q = \left[\left(\frac{P_1 - P_2}{\rho} \right) \left(\frac{A_1^2 A_2^2}{A_1^2 - A_2^2} \right) \right]^{1/2}.$$

$$Q = \left[2 \left(\frac{P_1 - P_2}{\rho} \right) \left(\frac{A_1^2 A_2^2}{A_1^2 - A_2^2} \right) \right]^{1/2}.$$

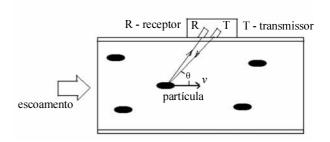

$$Q = \left[\left(\frac{P_1 - P_2}{2\rho} \right) \left(\frac{A_1^2 A_2^2}{A_1^2 - A_2^2} \right) \right]^{1/2}.$$

$$Q = \left[\left(\frac{P_2 - P_1}{\rho} \right) \left(\frac{A_1^2 A_2^2}{A_1^2 - A_2^2} \right) \right]^{1/2}.$$

$$Q = \left[2 \left(\frac{P_2 - P_1}{\rho} \right) \left(\frac{A_1^2 A_2^2}{A_1^2 - A_2^2} \right) \right]^{1/2}.$$

QUESTÃO 52

O esquema abaixo representa o deslocamento de um corpo C solidário ao tubo de Pitot, em movimento retilíneo e uniforme, submerso em um grande reservatório, onde se pode considerar a água como estacionária. O valor de h_1 é de 20 cm e o valor de h_2 é de 50 cm.

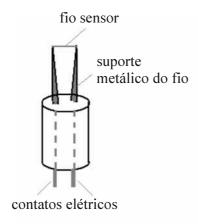


Assumindo-se o valor da aceleração da gravidade como $10~\text{m/s}^2$, o valor da velocidade de deslocamento do tubo em relação à água será de

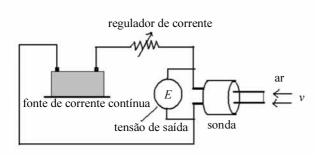
- **a** 0.5 m/s
- **3** 1.0 m/s
- **9** 1, 5 m/s
- **o** 2,0 m/s
- **2**,5 m/s

QUESTÃO 53

A medição de velocidade mediante o uso dos princípios acústicos emprega o efeito Doppler apresentado por uma onda de pressão do tipo ultrassom, de alta frequência, em que o sinal de um transmissor T é refletido por partículas sólidas ou bolhas presentes no escoamento, como mostrado no esquema seguinte.

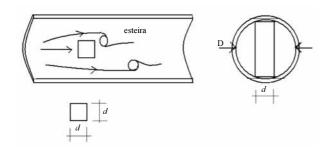

A razão entre a frequência f' de recepção e a frequência de emissão f é expressa por: $\frac{f'}{f} = \frac{(c + v \cos \theta)}{(c - v \cos \theta)}$, em que c é a velocidade da

onda sonora no fluido, v é o módulo da velocidade da partícula e θ , o ângulo entre o feixe de ultrassom e o vetor velocidade. Assumindo-se que, nas aplicações convencionais, $c \gg v$, tal que se pode desprezar termos envolvendo potências segundas e mais elevadas da razão c/v, a frequência Doppler $\Delta f = f' - f$ será expressa por


$$\Delta f = \frac{f v \cos \theta}{c}$$

$$\mathbf{\Theta} \quad \Delta f = \frac{4 f v \cos \theta}{c}$$

Uma sonda anemométrica a fio quente é um sensor usado para se medir velocidades em escoamentos turbulentos. O esquema de uma sonda para se medir uma componente de velocidade encontra-se representado na figura abaixo.


Normalmente, emprega-se a platina ou o tungstênio como material do fio sensor. O esquema de um circuito básico operando no modo corrente constante é mostrado a seguir.

A respeito dessa técnica, que usa corrente constante para alimentação da sonda a fio quente, assinale a opção correta.

- Fixada a corrente elétrica, a temperatura do fio independerá da velocidade do ar.
- O resfriamento do fio independe do ângulo que o vetor velocidade faz com a direção normal ao fio.
- A transferência de calor entre o fio e o ar independe do coeficiente de calor por convecção entre o fio e o ar.
- A transferência de calor por convecção entre o fio e o ar é função, entre outros parâmetros, do número de Reynolds do escoamento, baseado no diâmetro do fio.
- A curva de calibração de um anemômetro a fio quente, baseada na lei de King, tem por objetivo estabelecer a relação entre a velocidade do ar e o tempo.

Um medidor de vazão que emprega como princípio a geração de uma sequência de vórtices, denominada de esteira de von Karman, a partir de um escoamento em torno de um corpo rombudo de seção circular, retangular ou triangular, encontra-se esquematizado na figura abaixo. Nesse sistema, considere que um corpo rombudo de seção quadrada seja instalado no interior de um tubo de seção transversal circular. A velocidade e a pressão na esteira, nas proximidades do corpo rombudo, oscilam ao longo do tempo.

A partir das informações apresentadas, assinale a opção correta a respeito da técnica de medição de vazão por detecção de vórtices.

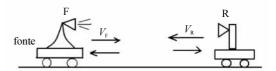
- **Q** Um dos parâmetros adimensionais fundamental na técnica é o número de Strouhal, definido por $S = f \times V/d$, em que f é a frequência dos vórtices; V, a velocidade de aproximação do fluido em relação ao corpo rombudo e d, o lado do corpo rombudo.
- **19** O número de Strouhal S tem dimensão de velocidade.
- O número de Strouhal independe do número de Reynolds quando esse número é baixo, ou seja, da ordem de 10².
- **O** número de Strouhal torna-se basicamente constante em uma faixa de número de Reynolds elevada ($10^4 < R_e < 10^7$), em que a velocidade do fluido em relação ao corpo rombudo fica diretamente proporcional à frequência de emissão de vórtices.
- Definindo-se uma razão de bloqueio como sendo (d/D)², quanto maior for essa razão, menor será a perda de carga produzida pelo corpo rombudo gerador de vórtices, para determinada vazão.

QUESTÃO 56

Um objeto cuja massa específica é idêntica à do ar é colocado em um túnel de vento cuja seção de testes é horizontal e retilínea. Em determinado ponto da seção de testes, a velocidade do objeto é de 5 m/s. Dois metros a jusante do primeiro ponto, a velocidade é de 15 m/s. Supondo regime permanente e uma variação linear da velocidade entre as duas tomadas, a aceleração do objeto no segundo ponto, em m/s², é igual a

- \mathbf{A} 30².
- **3** 45.
- **9** 60.
- **o** 75.
- **9**0.

QUESTÃO 57


A posição de uma partícula fluida é dada pela equação $x(t) = 4\text{sen}(3t)\mathbf{\hat{i}} + 4\text{cos}(3t)\mathbf{\hat{j}} - 5t\mathbf{\hat{k}}$, em que $\mathbf{\hat{i}}$, $\mathbf{\hat{j}}$, $\mathbf{\hat{k}}$ são os vetores unitários das direções paralelas aos eixos ordenados de um sistema cartesiano. As grandezas são todas medidas utilizando-se o Sistema Internacional de Unidades (SI). Considerando tais condições, assinale a opção correta.

- **O** movimento da partícula acontece em um plano.
- **9** O vetor velocidade do movimento da partícula não possui componente na direção \hat{k} .
- A projeção do movimento da partícula, em um plano ortogonal à direção \hat{k} , é uma circunferência de raio 2 m.
- O movimento da partícula tem aceleração nula.
- **A** magnitude da aceleração do movimento varia com o tempo.

QUESTÃO 58

O efeito Doppler produzido com uma onda sonora está associado com a mudança aparente na frequência da onda, quando existe movimento relativo entre a fonte emissora do som F e do receptor R, como mostrado esquematicamente a seguir:

ar estacionário

F - fonte;

R - receptor;

 $V_{\rm F}$ - velocidade da fonte em relação a um referencial fixo à terra; $V_{\rm R}$ - velocidade do receptor em relação a um referencial fixo à terra; C - velocidade da onda sonora em relação a um referencial fixo à terra.

Suponha que a fonte e o receptor estejam fixos, separados por determinada distância, com a onda sonora propagando-se a uma velocidade C no ar estacionário, e alcançando o receptor com uma frequência f_0 e um comprimento de onda λ_o .

Caso haja movimento relativo entre F e R, haverá uma mudança aparente na frequência recebida por R expressa por.

Nessas condições, se a velocidade do som no ar estacionário for de $C=340 \, \mathrm{m/s}$, se a fonte deslocar-se para a direita com velocidade de magnitude $V_{\mathrm{F}}=40 \, \mathrm{m/s}$ e o receptor deslocar-se para a esquerda

com ve $f'=f_0\bigg(\frac{C\pm V_R}{C\pm V_F}\bigg)$ locidade de magnitude $V_{\rm R}=20$ m/s, então f/f_0 será igual a

$$\Phi = \frac{f'}{f_0} = 0.6$$
.

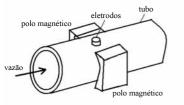
3
$$\frac{f'}{f_0} = 0.8$$
.

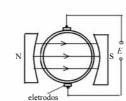
$$\Theta = \frac{f'}{f_0} = 1.2$$
.

$$f' = 1.8$$
.

Um medidor de vazão do tipo magnético tem seu princípio de funcionamento baseado na lei de indução eletromagnética de Faraday:

$$E = B \times L \times V$$
, em que

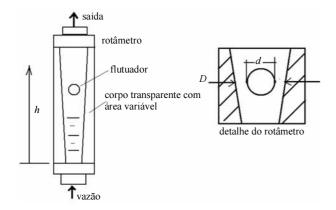

E = voltagem induzida;


B = fluxo magnético;

L = comprimento do condutor;

V = velocidade do condutor em relação ao campo magnético.

Um esquema de um medidor de vazão com base nesse princípio é mostrado esquematicamente a seguir.

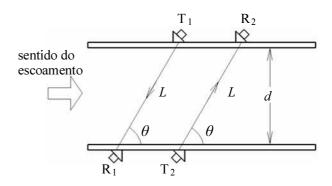


O fluido é submetido a um campo magnético, em um trecho do tubo.

Com referência a essa técnica de medição de vazão, assinale a opção correta.

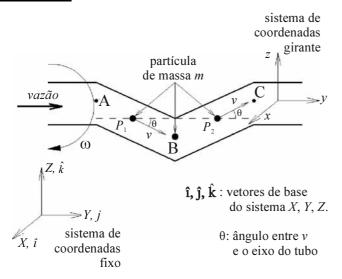
- O fluido não pode agir como um condutor elétrico, ou seja, deve comportar-se como um isolante elétrico perfeito.
- O movimento do fluido, relativamente ao campo magnético, gera uma voltagem inversamente proporcional à velocidade do fluido.
- O fluido age como um condutor elétrico, tendo comprimento proporcional ao diâmetro interno do tubo e velocidade proporcional à velocidade média do escoamento.
- A voltagem induzida é diretamente proporcional ao diâmetro do tubo.
- A voltagem induzida é inversamente proporcional ao campo magnético.

O rotâmetro é um dispositivo largamente utilizado para se medir vazão de líquidos e de gases em muitos processos industriais. O rotâmetro é constituído de um tubo transparente, normalmente de vidro ou plástico, e de um flutuador, como mostrado a seguir.



Com referência ao funcionamento do dispositivo acima descrito, assinale a opção correta.

- A posição de equilíbrio do flutuador em uma altura h, ao longo do rotâmetro, é estabelecida apenas pela ação do peso do flutuador e de seu empuxo.
- O rotâmetro pode operar com a seção transversal interna constante ao longo da altura h, ou seja, com uma folga $\pi/4(D^2-d^2)$ = constante.
- Sobre o flutuador, além do peso e do empuxo, atua também uma diferença de pressão a montante e a jusante desse elemento, denominada arraste de forma, além de uma força viscosa.
- A força hidrodinâmica líquida atuante no flutuador independe da folga entre o flutuador e o corpo interno do rotâmetro.
- Tendo calibrado o rotâmetro com água, e tendo estabelecido a escala no corpo do rotâmetro, essa escala se aplica igualmente para uma vazão de um fluido bem mais viscoso, como a glicerina, desde que esta se encontre à mesma temperatura da água.


QUESTÃO 61

Os medidores de vazão do tipo ultrassônico utilizam ondas de pressão de alta frequência, tipicamente da ordem de 10 MHz, para computar a vazão de líquidos. Uma das técnicas que utilizam o ultrassom é denominada de tempo de trânsito. No esquema seguinte, é mostrado um trecho de um tubo, onde externamente são instalados transmissores e receptores de ultrassom, no caso denominados T_1 , T_2 , R_1 e R_2 , simbolizando os transmissores 1 e 2 e os receptores 1 e 2, respectivamente, sendo L a distância de R_1 a R_1 e a de R_2 a R_2 .

Com relação à técnica acima descrita, assinale a opção correta.

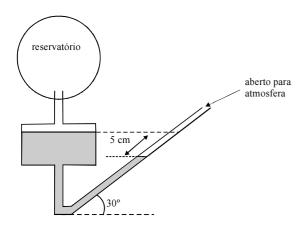
- O tempo que a onda acústica gasta para percorrer a distância de T₁ a R₁ independe do ângulo θ, entre o vetor velocidade e a direção do feixe de ultrassom.
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- O tempo gasto pela onda para percorrer a distância entre os conjuntos transmissor/receptor independe do ângulo θ, mantidos os sinais T₁-R₁ e T₂ - R₂ paralelos.
- O tempo gasto para a onda de pressão percorrer a distância entre T₁ e R₁ é menor que o tempo gasto para ela percorrer a distância entre T₂ e R₂.
- O tempo gasto pela onda da pressão para percorrer a distância entre T₁ e R₁ é maior que o tempo gasto para ela percorrer a distância entre T₂ e R₂.

Considere que uma mangueira curva seja colocada para girar com velocidade $\omega = \omega \hat{k}$, como mostrado no esquema acima. Uma vazão constante de água escoa no interior dessa mangueira. A magnitude da velocidade v, em relação à mangueira, de uma partícula de água de massa m mantém-se constante em todo o trecho curvo ABC. Nessa situação, considerando que a aceleração de Coriolis, a_c , é definida por $a_c = 2\omega \times v$, a força de Coriolis que atua sobre a partícula quando esta passa pelos pontos P_1 e P_2 , no instante em que o tubo passa pelo plano YZ, é, respectivamente, igual a

- **Q** $F_1 = 2m\omega v \operatorname{sen} \theta(-\mathbf{j}) \operatorname{e} F_2 = 2m\omega v \operatorname{sen} \theta(+\mathbf{j})$
- **9** $F_1 = 2m\omega v \text{ sen } \theta(-\mathbf{k}) \text{ e } F_2 = 2m\omega v \text{ sen } \theta(+\mathbf{k})$
- **6** $F_1 = 2m\omega v \operatorname{sen} \theta(-i) \operatorname{e} F_2 = 2m\omega v \operatorname{sen} \theta(+i)$
- **o** $F_1 = 4m\omega v \operatorname{sen} \theta(-\mathbf{j}) \operatorname{e} F_2 = 4m\omega v \operatorname{sen} \theta(+\mathbf{j})$
- **6** $F_1 = 4m\omega v \text{ sen } \theta(+\mathbf{j}) \text{ e } F_2 = 4m\omega v \text{ sen } \theta(-\mathbf{j})$

QUESTÃO 63

Com relação aos conceitos fundamentais da mecânica dos fluidos, assinale a opção correta.

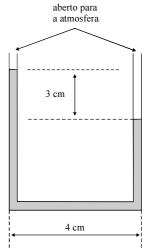

- De acordo com a hipótese do contínuo, a velocidade de uma partícula material, em um ponto do escoamento, refere-se à velocidade da molécula de fluido que ocupa aquela posição em um dado instante.
- A pressão estática em um escoamento é dada pela terça parte do somatório dos termos da diagonal principal do tensor de tensões.
- O tensor de tensões determina as forças de campo que atuam em qualquer superfície interna ao escoamento.
- A pressão que um fluido em repouso exerce sobre as paredes do recipiente que o contém depende da sua viscosidade.
- **9** Em um fluido ideal, o tensor de tensões pode ter elementos não nulos fora da diagonal principal.

Um bloco de base quadrada desliza a uma velocidade constante de $2\,$ m/s sobre uma película de água depositada em uma superfície plana, completamente lisa e horizontal. Considerando-se que o escoamento entre o bloco e a superfície plana seja laminar, sabendo que a lâmina de água tem 5 mm de espessura, que a área da base do bloco é igual a $2\,$ m² e que a viscosidade dinâmica da água é igual a $1\times 10^{-3}\,$ Pa · s, a força, em newton (N), necessária para manter o bloco em movimento retilíneo e uniforme será igual a

- **a** 0.05.
- **3** 0,08.
- **9** 0,5.
- **0**,8.
- **3** 8,0.

QUESTÃO 65

Os manômetros são dispositivos utilizados para realizar medidas de diferença de pressão pelo deslocamento de colunas de líquidos. A figura abaixo ilustra um manômetro inclinado que é utilizado para medir a diferença de pressão entre um reservatório de gás e a atmosfera.

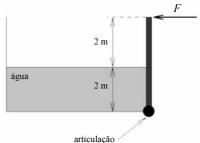


Levando-se em conta as informações da figura, sabendo-se que a massa específica do fluido do manômetro é de 1.000 kg/m³ e considerando-se a aceleração da gravidade local igual a 10 m/s², é correto afirmar que a pressão manométrica do reservatório, em pascal (Pa), é igual a

- \bullet -7,5 × 10².
- **3** -5.0×10^2 .
- \bullet -2.5 × 10².
- **Q** 2.5×10^2 .
- **3** 5.0×10^2 .

QUESTÃO 66

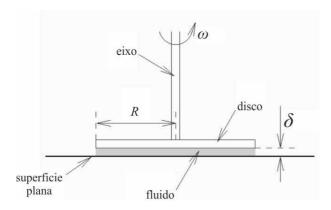
Um tubo em U, ilustrado na figura abaixo, é fixado a um veículo que se movimenta em linha reta, com aceleração constante. O movimento acontece no plano do tubo. A massa específica do fluido manométrico é de 1.000 kg/m³ e a aceleração da gravidade local é de 10 m/s².



Considerando-se os dados do texto e as informações contidas na figura, é correto afirmar que a aceleração do veículo, em m/s², é igual a

- **a** 2,5.
- **3** 5,0.
- **9** 7,5.
- **o** 10,0.
- **1**2,5.

QUESTÃO 67


O tanque mostrado na figura abaixo está parcialmente cheio de água. A base do tanque é um quadrado cuja área é de 1 m². Uma de suas laterais é articulada.

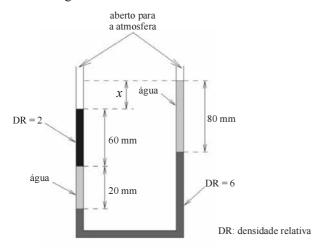
Considerando-se que a massa específica da água seja de $1.000~{\rm kg/m^3}$ e que a aceleração da gravidade local seja de $10~{\rm m/s^2}$, a magnitude da força F, em kN, necessária para manter o tanque fechado será de

- $\mathbf{a} = \frac{2}{3}$
- **B** $\frac{4}{3}$
- **9** 2.
- $\mathbf{O} = \frac{8}{3}$
- **a** $\frac{10}{3}$

Um viscosímetro rotativo é composto por um disco de raio R que gira sobre uma película do fluido de espessura δ e cuja viscosidade se quer medir. A amostra de fluido está depositada sobre uma superfície lisa e plana, como ilustra a figura abaixo. Neste dispositivo, a viscosidade dinâmica do fluido pode ser determinada pela medida do torque T necessário para manter o disco girando a uma dada velocidade angular constante ω .

Considerando-se a simbologia definida na figura e que o escoamento entre o disco e a superfície plana seja laminar e permanente, a viscosidade dinâmica do fluido μ deverá relacionarse com o torque por meio da expressão

$$\mathbf{\Phi} \quad \mu = \frac{2\delta T}{\pi \omega R^4}$$


$$\mathbf{\Theta} \quad \mu = \frac{2\delta^2 T}{\pi \omega R^5}$$

$$\Theta \qquad \mu = \frac{4\delta T}{\pi \omega R^4}$$

$$\mathbf{o} \quad \mu = \frac{4\delta^2 T}{\pi \omega R^5}$$

$$\mathbf{\Theta} \quad \mu = \frac{2T}{\pi \omega R^3}$$

Um manômetro de tubo em U, ilustrado na figura abaixo, tem suas extremidades abertas para a atmosfera e contém três líquidos, sendo um deles a água. O comprimento das colunas dos líquidos e suas densidades relativas, em relação à água, estão indicados na figura.

Com base nessas informações e na figura acima, é correto afirmar que, nessa situação, a deflexão *x* em mm, é igual a

- **a** 5.
- **3** 10.
- **9** 20.
- **o** 30.
- **3** 40.

QUESTÃO 70

Um micromanômetro centrífugo pode gerar pequenas diferenças de pressão de forma muito acurada, permitindo medidas de elevada precisão. Esse tipo de dispositivo consiste em dois discos paralelos e alinhados que giram solidários. No espaço entre os discos há um fluido, que pode ser um líquido ou um gás. Depois de um intervalo suficientemente grande, após o início do movimento, o fluido que preenche a folga não mais escoa em relação aos discos, e uma diferença de pressão passa a ser percebida entre pontos do fluido no centro e na periferia. Considerando-se um micromanômetro centrífugo de raio igual a 20 mm, operando com ar, cuja massa específica seja de 1 kg/m³, girando no plano horizontal, a velocidade angular, em rad/s, necessária para se gerar uma diferença de pressão entre o centro e a periferia equivalente a 0,02 Pa, será igual a

- **a** 1.
- **3** 10.
- **9** 100.
- **1**.000.
- **3** 10.000.