GEOFÍSICO(A) JÚNIOR FÍSICA CONHECIMENTOS ESPECÍFICOS

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

- 01 Você recebeu do fiscal o seguinte material:
 - a) este caderno, com os enunciados das 70 questões objetivas, sem repetição ou falha, com a seguinte distribuição:

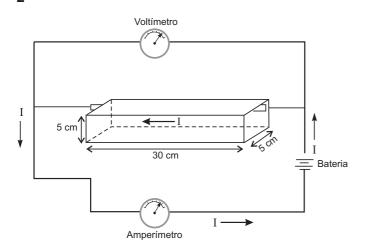
CONHECIMENTOS ESPECÍFICOS									
Questões	Pontos	Questões	Pontos	Questões	Pontos	Questões	Pontos		
1 a 10	0,5	21 a 30	1,5	41 a 50	2,5	61 a 70	3,5		
11 a 20	1,0	31 a 40	2,0	51 a 60	3,0	_	_		

- b) 1 CARTÃO-RESPOSTA destinado às respostas às questões objetivas formuladas nas provas.
- Verifique se este material está em ordem e se o seu nome e número de inscrição conferem com os que aparecem no CARTÃO-RESPOSTA. Caso contrário, notifique IMEDIATAMENTE o fiscal.
- **03** Após a conferência, o candidato deverá assinar no espaço próprio do **CARTÃO-RESPOSTA**, a caneta esferográfica transparente de tinta na cor preta.
- No CARTÃO-RESPOSTA, a marcação das letras correspondentes às respostas certas deve ser feita cobrindo a letra e
 preenchendo todo o espaço compreendido pelos círculos, a caneta esferográfica transparente de tinta na cor preta,
 de forma contínua e densa. A LEITORA ÓTICA é sensível a marcas escuras; portanto, preencha os campos de
 marcação completamente, sem deixar claros.

Exemplo: \bigcirc \bigcirc \bigcirc \bigcirc

- Tenha muito cuidado com o CARTÃO-RESPOSTA, para não o DOBRAR, AMASSAR ou MANCHAR.
 O CARTÃO-RESPOSTA SOMENTE poderá ser substituído caso esteja danificado em suas margens superior ou inferior BARRA DE RECONHECIMENTO PARA LEITURA ÓTICA.
- Para cada uma das questões objetivas, são apresentadas 5 alternativas classificadas com as letras (A), (B), (C), (D) e (E); só uma responde adequadamente ao quesito proposto. Você só deve assinalar **UMA RESPOSTA**: a marcação em mais de uma alternativa anula a questão, **MESMO QUE UMA DAS RESPOSTAS ESTEJA CORRETA.**
- 07 As questões objetivas são identificadas pelo número que se situa acima de seu enunciado.
- 08 SERÁ ELIMINADO do Processo Seletivo Público o candidato que:
 - a) se utilizar, durante a realização das provas, de máquinas e/ou relógios de calcular, bem como de rádios gravadores, headphones, telefones celulares ou fontes de consulta de qualquer espécie;
 - b) se ausentar da sala em que se realizam as provas levando consigo o Caderno de Questões e/ou o CARTÃO-RESPOSTA;
 - c) se recusar a entregar o Caderno de Questões e/ou o CARTÃO-RESPOSTA quando terminar o tempo estabelecido.
- Reserve os 30 (trinta) minutos finais para marcar seu CARTÃO-RESPOSTA. Os rascunhos e as marcações assinaladas no Caderno de Questões NÃO SERÃO LEVADOS EM CONTA.
- Quando terminar, entregue ao fiscal O CADERNO DE QUESTÕES E O CARTÃO-RESPOSTA e ASSINE A LISTA DE PRESENÇA.
 - Obs. O candidato só poderá se ausentar do recinto das provas após 1 (uma) hora contada a partir do efetivo início das mesmas. Por motivos de segurança, o candidato NÃO PODERÁ LEVAR O CADERNO DE QUESTÕES, a gualquer momento.
- 11 O TEMPO DISPONÍVEL PARA ESTAS PROVAS DE QUESTÕES OBJETIVAS É DE 4 (QUATRO) HORAS, findo o qual o candidato deverá, obrigatoriamente, entregar o CARTÃO-RESPOSTA.
- 12 As questões e os gabaritos das Provas Objetivas serão divulgados no primeiro dia útil após a realização das mesmas, no endereço eletrônico da FUNDAÇÃO CESGRANRIO (http://www.cesgranrio.org.br).

CONHECIMENTOS ESPECÍFICOS


1

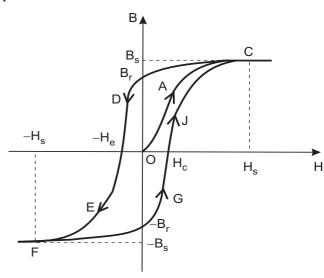
Uma gota de óleo de 4,0.10⁻³ g de massa está no espaço compreendido entre as duas placas paralelas de um capacitor, cada uma com 125 cm² de área. Quando a placa superior tem uma carga de 5,0.10⁻⁶ C e a inferior uma carga equivalente negativa, a gota permanece em equilíbrio estático. Qual a carga transportada pela gota, em unidades do sistema internacional?

Considere: $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ C}^2 \cdot \text{m}^{-2} \cdot \text{N}^{-1n} \text{ e g} = 9.8 \text{ m/s}^2$.

- (A) $8,70.10^{-13}$
- (B) $9,0.10^{-11}$
- (C) $5,0.10^{-6}$
- (D) $6.0.10^{-9}$
- (E) $2.0.10^{-6}$

2

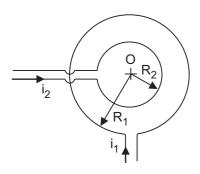
Uma amostra de água do mar é colocada em uma célula de medir condutividade conforme a figura acima. A célula é ligada aos terminais de uma fonte, que são ligados a um amperímetro e a um voltímetro para medir a corrente e a diferença de potencial através da água. As medidas efetuadas foram 0,75 A e 10,0 V. Considerando-se a água do mar um condutor ôhmico, qual o valor de sua resistividade, expressa em unidade do Sistema Internacional?


- (A) 13,30
- (B) 11,00
- (C) 1,25
- (D) 1,00
- (E) 0,11

3

A utilidade dos capacitores como elemento nos circuitos elétricos está ligada à sua capacidade de armazenar energia. O capacitor pode ser associado em série ou em paralelo. Dois capacitores de capacitância 3 μF e 4 μF são ligados em série com uma bateria de 15 V. A carga adquirida por essa associação em unidade SI é

- (A) $6.0.10^{-5}$
- (B) $2.5.10^{-5}$
- (C) $7.0 \cdot 10^{-5}$
- (D) $4.5.10^{-5}$
- (E) $10,5.10^{-5}$


4

Curva de Histerese

Em alguns materiais, um pequeno campo magnético externo pode provocar um elevado grau de alinhamento dos momentos magnéticos dos seus componentes. Analisando-se o gráfico acima, conclui-se que

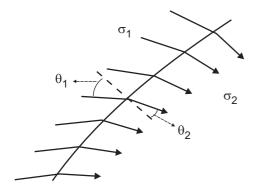
- (A) em C a magnetização se aproxima do valor de saturação, indicando alinhamento dos dipolos atômicos.
- (B) quando a intensidade do campo H diminui gradualmente a partir de C, ocorre aumento da magnetização.
- (C) quando H é reduzido a zero o deslocamento dos domínios no material é totalmente reversível, existindo ainda magnetização.
- (D) este comportamento é característico dos materiais paramagnéticos.
- (E) a área compreendida pelo ciclo de histerese mede o ganho de energia provocada pela irreversibilidade do processo.

Duas espiras circulares E₁ e E₂ concêntricas e coplanares, com raios R_1 = 0,5 π m e R_2 = 0,25 π m, são percorridas pelas correntes i_1 e i_2 , como indicado na figura acima. Considerando-se a corrente i, = 10,0 A e a permeabilidade

magnética do vácuo $4\pi \cdot 10^{-7} \frac{T \cdot m}{A}$, qual o valor da

corrente i2, em unidade do Sistema Internacional, para que o campo magnético resultante no centro da espira seja nulo?

(A) 10,0


(B) 5,0

(C) 4,0

(D) 2,5

(E) 2,0

6

Considere o problema geral em que ocorre a passagem de linhas de corrente de um meio de condutividade σ, para outro de condutividade σ_2 com $\sigma_1 > \sigma_2$, conforme figura acima. Nestas condições,

(A) $\sigma_1 E_1 = \sigma_2 E_2 \cos \theta_1$

(B) $E_1 \theta_1 = E_2 \theta_1$

(C) $tg\theta_1 < tg\theta_2$

(D) as linhas de corrente no meio de maior condutividade tendem a divergir.

(E) a refração das linhas de corrente independe das condutividades dos meios.

7

O gradiente da função $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ no ponto (0, 0,1) é igual a

(A) (0,0,0)

(B) (0,0,1)

(C)(0,1,0)

(D)(1,0,0)

(E) (1,1,1)

Com relação à função delta de Dirac, considere as sentenças a seguir.

I - $\delta(t) = 0$ se $t \neq 0$ e $\delta(0) = \infty$

II _
$$\int \delta(t-t_0)f(t)dt = f(t)$$
 e $\int\limits_{-\infty}^{\infty} \delta(t)dt = 1$

III - Se um sinal contínuo x (t) for modulado pelo trem de

impulsos $s(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$, onde n é inteiro e T é

o período, então o sinal resultante tem valores de

x (t) nas posições nT e nenhum valor entre estas

amostras.

É(São) verdadeira(s) a(s) sentença(s)

(A) I, apenas.

(B) II, apenas.

(C) I e II, apenas.

(D) II e III, apenas.

(E) I, II e III.

A integral \int_C^F , onde $F(x,y)=(x^2,xy^3)$ e a curva C é definida pela equação $y^2-x=0$, ligando os pontos (2,2) e (2,-2), é igual a

(A) - 2

(B) - 1

(C) 0

(D) 1

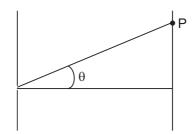
(E) 3

Dada a superfície definida por $S = \left\{ (x,y,z) \in R^3 \,\middle|\, x^2 + y^2 + z^2 = 1; z > 0 \right\} \ \ e \ \ o \ \ campo$ vetorial $\vec{F}(x,y,z) = (-y,x,ze^x + y)$, o fluxo do rotacional desse campo através de S com orientação pela normal unitária que determina o caminho $\gamma(t) = (\cos t, -\sin t, 0)$ para sua fronteira será igual a

- (A) e
- (B) $-e^{2}$
- (C) e^{-2}
- (D) 0
- (E) -2π

11

Uma força conservativa rege o movimento de uma partícula de massa m=0.5 kg. Sabendo-se que a energia potencial correspondente a esta força é dada por $U(x)=-2xe^{-3x/4}$ (SI), então o módulo da aceleração da partícula na posição $x=4\,$ m, em m/s², é igual a


- (A) $\frac{4}{e^3}$
- (B) $\frac{8}{e^3}$
- $(C) e^2$
- (D) 4e²
- (E) 8e²

12

Uma força $\vec{F}(x) = (x^2 + x)\vec{i}$ (SI) atua sobre um corpo na direção de sua velocidade. A variação de energia cinética entre as posições x = 0 e x = 6, calculada em joules, é

- (A) 42
- (B) 75
- (C) 80
- (D) 90
- (E) 100

13

Em uma experiência de fenda simples representada na figura acima, a distância entre o anteparo e a fenda é de 80 cm e o tamanho da fenda é de a = 2,4 μm . Sabendo-se que uma luz monocromática de comprimento de onda λ = 480 nm atinge essa fenda, qual o valor que melhor aproxima a diferença de fase no ponto P do anteparo, produzida pelas ondas secundárias de Huygens, provenientes do topo e da base da fenda e que chegam no ponto P?

Dado: $\theta = 30^{\circ}$

- (A) $5/4 \pi$
- (B) 5π
- (C) 4π
- (D) 2π
- (E) $1/2 \pi$

14

Dado um operador linear TA: $\mbox{R}^2 \rightarrow \mbox{R}^2$, tal que

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \text{ então seus autovetores são}$$

- (A) $T(x,x) = 2(x,x) e T(x,0) = 1(x,0), x \neq 0$
- (B) $T(x,-2x) = (x,-2x) e T(x,0) = 3(x,0), x \neq 0$
- (C) $T(x,2x) = 2(x,2x) e T(x,0) = 2(x,0), x \neq 0$
- (D) $T(x,-x) = (x,-x) e T(x,0) = 1(x,0), x \neq 0$
- (E) T(x,-2x) = 3(x,-2x) e T(x,0) = 2(x,0), $x \neq 0$

15

Sendo i a unidade imaginária e $0 \le \theta \le \pi$ (radianos), então o número complexo z=1 + $e^{6\theta i}$ pode ser escrito na forma

- (A) $e^{3\theta i}$ sen 6θ
- (B) $6e^{3\theta i}$ sen 3θ
- (C) $e^{3\theta i} \cos 3\theta$
- (D) $e^{3\theta i}$ sen 3θ
- (E) $2e^{3\theta i}\cos 3\theta$

Foram realizadas medidas das massas corporais de 2000 integrantes de um determinado grupo da população. Para esse conjunto de dados foi calculado a variância σ^2 . No entanto, descobriu-se que todas as balanças subtraíram quatro(4) unidades de massa para cada indivíduo, independente de sua massa. Assim, a variância esperada após as devidas correções é

(A) σ^2

(B) $\sqrt{2} \sigma^2$

(C) $\sqrt{2} \, \sigma^2 / 2$

(D) 2 σ^2

(E) $\sigma^2 + 4/200$

• 7

17

Um dado é lançado duas vezes e todos os seis resultados possíveis para cada lançamento são equiprováveis. A probabilidade condicional para que ambos sejam pares quando pelo menos um dos resultados destes dois lançamentos for um número par será igual a

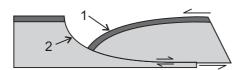
(A) 1

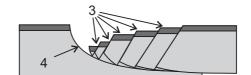
(B) 2/3

(C) 1/2

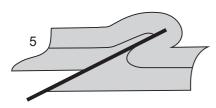
(D) 1/3

(E) 1/4

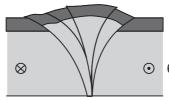

18


Considerando-se um grau geotérmico médio, qual é a combinação que corresponde às profundidades aproximadas de soterramento em que a migração primária alcança o máximo em três distintos modos?

Modo de migração primária


	Suspensao coloidal	Fase liquida	Fase gasosa	
	ou micelar	discreta	discreta	
(A)	500 m	1.500 m	5.000 m	
(B)	1.000 m	3.000 m	4.000 m	
(C)	1.000 m	1.500 m	2.000 m	
(D)	3.000 m	2.000 m	1.000 m	
(E)	4.000 m	2.500 m	1.000 m	

19



TWISS, R.J. & MOORES, E.M. Structural Geology W.H. Freeman and Co, 2007.

 \otimes

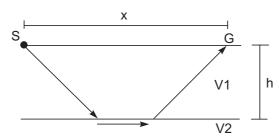
As estruturas tectônicas (números de 1 a 7) nas figuras acima correspondem a

- (A) 1.sinclinal de *rollover*; 2. falha normal; 3. falhas lístricas; 4. falha normal; 5. *splay fault*; 6. estrutura em flor negativa; 7. estrutura em flor positiva.
- (B) 1.sinclinal de *rollover*; 2. falha lístrica; 3. falhas normais; 4. falha lístrica; 5. *splay fault*; 6. estrutura em flor negativa; 7. estrutura em flor positiva.
- (C) 1.sinclinal de *rollover*; 2. falha normal; 3. falhas lístricas; 4. falha normal; 5. dobra forçada; 6. estrutura em flor positiva; 7. estrutura em flor negativa.
- (D) 1.anticlinal de *rollover;* 2. falha lístrica; 3. falhas normais; 4. falha lístrica; 5. dobra forçada; 6. estrutura em flor positiva; 7. estrutura em flor negativa.
- (E) 1.anticlinal de *rollover*; 2. falha lístrica; 3. falhas normais; 4. falha lístrica; 5. *splay fault*; 6. estrutura em flor negativa; 7. estrutura em flor positiva.

Com relação às armadilhas de petróleo e gás, analise as afirmações a seguir.

- I Armadilhas estruturais são associadas a elementos tectônicos (dobras e/ou falhas) já existentes anteriormente à deposição do pacote sedimentar envolvido com a acumulação de petróleo ou gás.
- A movimentação ascendente de sal produz diversos tipos de armadilhas (denominadas de armadilhas diapíricas), podendo apresentar aspectos comuns a armadilhas estruturais e estratigráficas.
- III Armadilhas estratigráficas são produzidas por processos deposicionais ou pós-deposicionais, não envolvendo mudanças litológicas.
- IV Armadilhas estruturais do tipo anticlinal são de fácil reconhecimento e com elevado potencial para acumulação de hidrocarbonetos.

São corretas APENAS as afirmativas


(A) lell.

(B) II e IV.

(C) III e IV.

- (D) I, II e III.
- (E) I, III e IV.

21

Na superfície do terreno são instalados vários sensores G à direita da fonte S. Cada sensor tem afastamento x da fonte, conforme figura acima. As duas primeiras camadas são homogêneas, planas e paralelas, com velocidade de propagação V1 e V2, respectivamente. Considerando-se que a onda refratada é registrada ao longo da distância x na superfície, pode-se afirmar que

- o ângulo crítico para o qual a onda refratada retorna
 à superfície é θ_c = arcsen V₂/V₄;
- II o gráfico do registro da onda refratada (afastamento versus tempo de chegada de cada raio) é uma reta com coeficiente angular $\frac{1}{v_2}$;
- III o sensor mais próximo da fonte que registra a onda refratada tem afastamento $x = 2h \cdot tg\theta_c$.

É correto o que se afirma em

- (A) II, apenas.
- (B) III, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.

(E) I, II e III.

22

Um corpo em movimento harmônico simples de período 1,0 s tem energia total igual a 16,0 J. Se sua massa é igual a 2,0 kg, então sua aceleração máxima, em m/s², é de intensidade igual a

- (A) $8,0\pi$
- (B) 8,0
- (C) 4,0
- (D) 2,0
- (E) 1,0

23

Considerando-se a equação da onda em uma dimensão

$$\frac{1}{V^2}\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \text{ pode-se afirmar que são soluções da mes-}$$

ma as funções:

$$I - u = f(x-Vt)$$

$$II - II = e^{(x-Vt)}$$

III –
$$u = e^{(xt)}$$

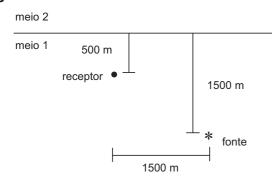
$$IV - u = f(x+Vt) + f(x-Vt)$$

$$V - u = f(t+Vx) + f(t-Vx)$$

Obs: a função f e suas derivadas primeira e segunda são contínuas.

É(São) verdadeira(s) **APENAS** a(s) sentença(s)

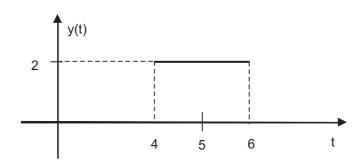
- (A) V.
- (B) I e II.
- (C) II e III.
- (D) I, II e IV.
- (E) I, IV e V.


24

O valor da integral $\int_{0}^{1} \frac{dx}{1+2x}$ é igual a

(A)
$$\ell n$$
 3

(B)
$$\frac{1}{2} \ell n \ 3$$


(C)
$$-\frac{2}{3} \ell n \ 2$$

Na figura ao lado, tem-se uma fonte de ondas harmônicas representada por asterisco, e um receptor representado por um ponto. Considerando-se a amplitude da fonte igual a uma unidade e a velocidade de propagação do meio 1 igual a 2500 m/s, qual a atenuação provocada pela divergência esférica e qual o tempo, em segundos, de propagação da onda refletida na interface e registrada no receptor, respectivamente?

- (A) 1/1500 e 1,5
- (B) 1/1500 e 2
- (C) 1/2500 e 1
- (D) 1/2500 e 1,5
- (E) 1/3000 e 1

26

Sabendo-se que a transformada de Fourier da função definida por $y(t) = \begin{cases} 1 & |t| < 1 \\ 0 & |t| > 1 \end{cases}$ é igual $Y(\omega) = 2\frac{sen(\omega)}{\omega}$, a transformada de Fourier da função definida por $y(t) = \frac{1}{\omega}$

da de Fourier da função mostrada na figura acima é

(A)
$$Y(\omega) = 2 \frac{\text{sen}(\omega)}{\omega}$$

(B)
$$Y(\omega) = 4 \frac{\text{sen}(\omega)}{\omega}$$

(C)
$$Y(\omega) = 4 \frac{\text{sen}(\omega)}{\omega} e^{-j\omega 5}$$

(D)
$$Y(\omega) = 2 \frac{\text{sen}(\omega)}{\omega} e^{j\omega 5}$$

(E)
$$Y(\omega) = 4 \frac{\text{sen}(\omega)}{\omega} e^{-j\omega 4}$$

27

Os pontos (4,0,0), (0,-6,0) e (0,0,-4) pertencem ao plano π , cuja posição relativa à superfície esférica S de equação $(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$ é

- (A) tangente.
- (B) secante e sua interseção com S é uma circunferência de raio 3/2.
- (C) secante e sua interseção com S é uma circunferência de raio 1/2.
- (D) externa e seu ponto mais próximo a S é (0,-6,0).
- (E) externa e seu ponto mais próximo a S é (4,0,0).

Um determinado fenômeno aleatório obedece à lei de distribuição normal de probabilidades. Sendo o desvio padrão 3 e a média 2, então a probabilidade de se observar um valor X associado a esse fenômeno, no intervalo [0, 4] será expressa por

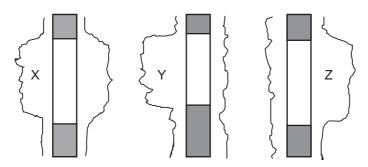
(A)
$$\frac{1}{\sqrt{2\pi}} \int_{0}^{4} e^{-\frac{1}{2} \left(\frac{x-2}{3}\right)^{2}} dx$$

(B)
$$\frac{1}{2\sqrt{2\pi}}\int_{0}^{4}e^{-\frac{1}{2}\left(\frac{x-3}{2}\right)^{2}}dx$$

(C)
$$\frac{1}{\sqrt{2\pi}} \int_{0}^{3} e^{\frac{1}{2} \left(\frac{x-2}{4}\right)^{2}} dx$$

(D)
$$\frac{1}{\sqrt{2\pi}} \int_{0}^{3} e^{\frac{1}{2} \left(\frac{x-4}{3}\right)^{2}} dx$$

(E)
$$\frac{1}{3\sqrt{2\pi}}\int_{0}^{4}e^{-\frac{1}{2}\left(\frac{x-2}{3}\right)^{2}}dx$$


29

REYNOLDS, J.M. An Introduction to Applied and Environmental Geophysics. New York: Wiley and Sons, 1997.

A figura acima ilustra duas anomalias magnéticas associadas a corpos em subsuperfície. Analisando-se a figura, conclui-se que

- (A) ambas as anomalias correspondem a corpos em profundidade similar, pois têm a mesma amplitude.
- (B) a magnetização dos corpos causadores das anomalias é similar, pois a amplitude das anomalias é igual.
- (C) a anomalia A é mais profunda que a B, pois há uma diferença entre seus comprimentos de onda e similaridade nas amplitudes.
- (D) os comprimentos de onda das anomalias A e B apenas indicam que o corpo causador de B é mais extenso que o de A.
- (E) o comprimento de onda da anomalia B indica que seu corpo causador é mais profundo, e a similaridade de suas amplitudes sugere que a magnetização do corpo causador de B é maior que a de A.

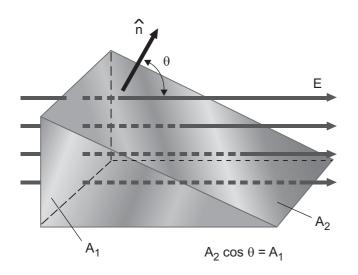
Analisando-se a figura acima, que representa a resposta dos perfis SP-Potencial Espontâneo (à esquerda) e Resistividade (à direita) para três tipos de camadas de rochas (X, Y, Z) situadas entre dois folhelhos impermeáveis, conclui-se que a camada

- (A) X é permeável, saturada de água salgada.
- (B) Y é permeável, saturada de óleo.
- (C) Y é permeável, saturada de água salgada.
- (D) Z é permeável, saturada de gás.
- (E) Z é permeável, saturada de água salgada.

31

Duas partículas de massas e velocidades escalares iguais, seguindo em trajetórias retilíneas e perpendiculares em um plano horizontal, chocam-se, permanecendo juntas. Nestas condições, considerando-se esse sistema perfeitamente isolado, a razão entre a energia cinética inicial e a final deste sistema é igual a

- (A) 2
- (B) $\sqrt{2}$
- (C) 1
- (D) $\frac{\sqrt{2}}{2}$
- (E) $\frac{1}{4}$


32

Sobre a propagação das ondas em meios elásticos, pode-se afirmar que

- I as ondas são caracterizadas pela amplitude, frequência, pelo comprimento de onda e pela velocidade de propagação, sendo que entre essas grandezas, as que dependem exclusivamente da fonte emissora são amplitude e frequência;
- II a frequência e a amplitude das ondas variam quando há mudança de meio;
- III uma onda cisalhante, ao passar de um meio de maior velocidade para um de menor velocidade, seus raios refratados se aproximam da normal a interface desses meios;
- IV na passagem de uma onda cisalhante por uma mudança de meio, são geradas duas ondas refletidas e duas refratadas;
- V quando o raio de uma onda compressional, de incidência normal, penetra em um meio de maior velocidade relativa ao seu meio de origem gera dois raios refratados, um de onda compressional e outro de onda cisalhante, ambos normais à superfície.

São verdadeiras as sentenças

(A) I, III e IV, apenas. (B) II, III e V, apenas. (C) III, IV e V, apenas. (D) I, II, III e IV, apenas. (E) I, II, III, IV e V.

A figura acima representa linhas de força de um campo elétrico uniforme perpendicular à área A_1 , porém oblíquo segundo um ângulo θ com o vetor unitário \boldsymbol{n} normal à área A_2 . Qual o valor do fluxo elétrico através dessa superfície A_2 ? (A) E tg θ

- (B) $A_1 \operatorname{tg} \theta$
- (C) $E.\hat{n}A_2$
- (D) $EA_1 \cos\theta$
- (E) EA₂ senθ

34

Um condutor percorrido por uma corrente elétrica de intensidade i é colocado em uma região de campo como o indicado na figura acima. O condutor fica sujeito à ação de uma força magnética que tenderá a

- (A) mantê-lo em repouso.
- (B) movê-lo no sentido do polo sul do íma.
- (C) movê-lo para fora do ímã.
- (D) movê-lo na direção e no sentido da corrente.
- (E) girá-lo verticalmente de 45°.

35

O polinômio de Taylor de grau 3 para e^{x} , quando $x \le 0$, é

dado por $\mathit{e}^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + R_{3}(x)$, onde $R_{3}(x)$ é o resto

na forma de Lagrange. Sendo assim, a integral

 $\int_{0}^{a} e^{-t^{2}} dt \text{ pode ser aproximada por }$

(A)
$$1-a^2+\frac{a^2}{2}-\frac{a^3}{6}$$

(B)
$$1-a^2+\frac{a^4}{2}-\frac{a^6}{6}$$

(C)
$$1+a^2+\frac{a^2}{2}+\frac{a^3}{6}$$

(D)
$$1+a^2+\frac{a^4}{2}+\frac{a^6}{6}$$

(E)
$$a - \frac{a^3}{3} + \frac{a^5}{10} - \frac{a^7}{42}$$

36

Dada a transformação linear $\begin{array}{c} T:R^2 \to R \\ (x,y) \mapsto x+2y \end{array}, \text{ então ker } T$

é dado por

(A)
$$\left\{(x,-\frac{x}{2});x\in R\right\}$$

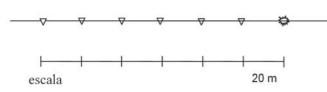
(B)
$$\{(x,-x); x \in R\}$$

(C)
$$\{(x,-2x); x \in R\}$$

(D)
$$\{(x,2x); x \in R\}$$

(E)
$$\{(2x,x); x \in R\}$$

A curva definida por $y = \frac{3}{8}x^2$ é tangenciada no ponto de abscissa 1 por uma reta, cuja distância até o centro da circunferência de equação $(x-1/2)^2 + (y-5)^2 = 1$ é igual a

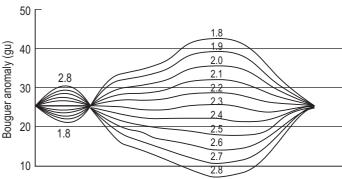

- (A) 0
- (B) 1
- (C) $\sqrt{2}$
- (D) 3
- (E) 4

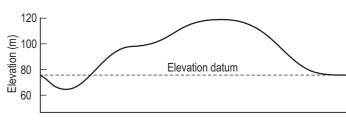
38

 $\label{eq:Sendo} Sendo \ x(t) = \delta(t) + 2\delta(t-1) \ \ e \ \ y(t) = \begin{cases} t+1, & 1 \leq t \leq 1 \\ 0, & \text{c.c.} \end{cases}, \ o \ valor \ no \ ponto \ z(1) \ da \ convolução \ z(t) = x(t)^*y(t) \ \acute{e}$

- (A) 5
- (B) 4,8
- (C) 4
- (D) 3,5
- (E) 3

39




- ¬ geofone
- ⇒ fonte sísmica

Para a geometria de aquisição, mostrada acima, são dados 80 tiros com espaçamento entre tiros de 10 m. Sabendo-se que a rolagem é feita para a direita, a multiplicidade de cobertura (full-fold coverage) desta geometria é

- (A) 5
- (B) 6
- (C) 8
- (D) 78
- (E) 80

DOBRIN, M.B.& SAVIT, C.H. Introduction to geophysical prospecting. New York: Mc Graw Hill, 1988.

O Método de Nettleton pode ser aplicado para estimar a densidade das rochas subjacentes sem a necessidade de amostragem física do material ou utilização de dados de geofísica de poço. A partir da análise da figura acima, conclui-se que a melhor estimativa de densidade, em Mgm⁻³, é de

- (A) 2.8, pois apresenta a menor correlação negativa com o relevo.
- (B) 2.3, pois apresenta a menor correlação absoluta com o relevo.
- (C) 1.8, pois apresenta a maior correlação positiva com o relevo.
- (D) 1.8, para a região de relevo abaixo do datum, e de 2.8 Mgm⁻³, para a região de relevo acima do datum, pois apresentam a maior correlação positiva e a menor correlação negativa com o relevo, respectivamente.
- (E) 2.8, para a região de relevo abaixo do *datum*, e de 1.8 Mgm⁻³, para a região de relevo acima do *datum*, pois apresentam a menor correlação negativa e a maior correlação positiva com o relevo, respectivamente.

Um corpo de massa m é lançado obliquamente nas proximidades da superfície terrestre. A descrição temporal do seu vetor velocidade $\vec{v}(t)$ se faz por um sistema de coordenadas cartesianas planas tal que $\vec{v}(t)$ = (20, 30 – 10t) (SI). No instante t = 1 s, a aceleração normal desse corpo tem módulo igual a

- (A) 10 m/s^2
- (B) 9.8 m/s^2
- (C) $5\sqrt{2} \text{ m/s}^2$
- (D) 1 m/s^2
- (E) 0 m/s^2

42

Um corpo de massa 2m repousa sobre a superfície de um planeta de forma esférica e homogêneo, de raio R e massa M. Sendo G a constante gravitacional, qual a energia mínima necessária para transportá-lo até um ponto distante 3R do centro deste planeta?

- (A) GMm/3R
- (B) GMm/2R
- (C) GMm/R
- (D) 2GMm/3R
- (E) 4GMm/3R

43

Uma espira circular de área 1,6 m² está imersa em um campo de indução magnética ${\bf B}$, uniforme, tal que o plano da espira é perpendicular a ${\bf B}$. Em um intervalo de tempo $\Delta t=2,0$ s, a intensidade de ${\bf B}$ diminui de 8T para 3T. A espira tem uma resistência R=3 Ohm. A força eletromotriz média induzida e a intensidade média da corrente induzida na espira, para este intervalo de tempo, correspondem em unidades do SI, respectivamente, a

- (A) 1,3 e 2,5
- (B) 1,5 e 2,0
- (C) 2,5 e 1,3
- (D) 4,0 e 1,3
- (E) 6,0 e 2,0

44

Considere duas ondas senoidais de equações escritas nas $y_1(x,t) = A(\text{senk}x - \pi t) \ e \ y_2(x,t) = A(\text{senk}x + \pi t) \ .$ A composição destas ondas gera uma onda estacionária. Como o gráfico acima representa a amplitude da onda resultante, então A e k serão, respectivamente, iguais a

- (A) 8 e 2
- (B) 4 e 4
- (C) 4 e 2
- (D) 4 e 0
- (E) 2 e 2

45

Como $\lim_{t\to\infty} (1+3t)^{\frac{1}{t}}$, então $\lim_{t\to\infty} (1+3t)^{\frac{1}{t}}$ será igual a

- (A) $e^{1/2}$
- (B) $e^{1/3}$
- $(C) e^2$
- (D) e^3
- $(E) e^6$

A equação diferencial $4x + \frac{d^2x}{dt^2} = 0$, onde x(0) = 0 e $\frac{dx(0)}{dt} = 1$, tem como solução

(A)
$$2 \text{ sen}(t + \pi/2)$$

(B)
$$\frac{1}{2}$$
sen(2t)

(C)
$$2 \cos(t + \pi)$$

(D)
$$2 \cos(t - \pi)$$

(E)
$$cos(t + \pi)$$

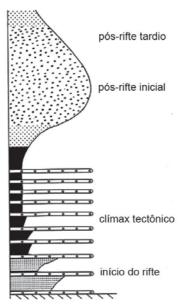
47

Considerando-se um sistema linear AX=B, onde A = $\left(a_{ij}\right)_{5,5}$, tal que $a_{ij} = \cos^2(j\frac{\pi}{6})$ e B = $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, o determinante de A

- (A) não é nulo e seu conjunto solução é vazio.
- (C) não é nulo e uma das suas soluções é a trivial.
- (E) é nulo e a solução trivial é única.

- (B) não é nulo e a solução trivial é única.
- (D) é nulo e uma de suas soluções é a trivial.

48


Sendo i a unidade imaginária e $0 \le \theta \le \pi$ (radianos), então o número complexo $z = sen(\frac{\theta}{2})[e^{6\theta i + 1}]$ tem módulo definido pelo

intervalo real

- (A)]0, 6[
- (C) $[0, 3\pi]$
- (E) $[0, 6\pi]$

- (B) [0, 7]
- (D) [0, e]

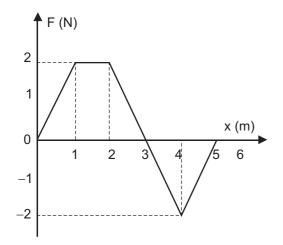
49

ALLEN, A. & ALLEN, J.R. 2005. **Basin Analysis**, (second edition). Blackwell Publishing.

Considerando-se a coluna estratigráfica típica de uma bacia do tipo rifte, conforme figura ao lado, a fase

- (A) pós-rifte inicial gera depósitos finos devido à estabilização tectônica.
- (B) inicial do rifte gera os depósitos mais grossos devido ao rejuvenescimento das drenagens.
- (C) de clímax tectônico gera os depósitos de maior granulometria devido ao aumento de relevo nas áreas adjacentes.
- (D) de clímax tectônico gera os depósitos de menor granulometria devido à diminuição de espaço na bacia
- (E) de clímax tectônico gera os depósitos de menor granulometria devido ao aumento de espaço na bacia.

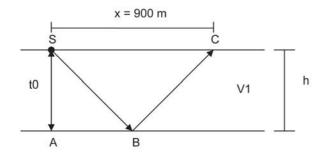
Modelo de McKenzie (1978)


Modelo de Wernicke (1985)

ROBERTS, A. & YIELDING, G. 1994. Continental Extensional Tectonics. In: Hancock, P.L. (Ed), Continental Tectonics. Pergamon Press

Nos modelos de formação de bacias rifte de McKenzie (1978) e de Wernicke (1985), mostrados nas figuras acima, as principais áreas de afinamento crustal e do manto litosférico são

- (A) coincidentes em ambos os modelos.
- (B) coincidentes no modelo de Wernicke e distintas no de McKenzie.
- (C) coincidentes no modelo de cisalhamento simples e distintas no de cisalhamento puro.
- (D) coincidentes no modelo de cisalhamento puro e distintas no de cisalhamento simples.
- (E) distintas em ambos os modelos.


51

Um corpo de massa 2,0 kg está sujeito a uma única força de módulo F na direção de sua velocidade, conforme a figura ao lado. Considerando-se que não existem forças dissipativas e que na posição x = 0.0 m o corpo está em repouso, então na posição x = 4.0 m a sua velocidade, em m/s, é igual a

- (A) 0,0
- (B) 0,5
- (C) 1,0
- (D) $\sqrt{3,0}$
- (E) 2,0

52

Uma onda compressional gerada no ponto S propaga-se pelo meio de velocidade V1. As interfaces onde a onda é aprisionada são paralelas, conforme figura ao lado. Sabe-se que o tempo percorrido pelo raio que vai de S até A e volta para S é igual a t0 = 0,4 s; o tempo percorrido de S até C passando por B é de t1= 0,5 s; e a distância x entre S e C é igual a 900 m. Qual o valor da velocidade V1 do meio de propagação e qual a distância h entre as interfaces paralelas, respectivamente?

- (A) V1 = 1000 m/s e h = 200 m
- (B) V1 = 2500 m/s e h = 500 m
- (C) V1 = 2800 m/s e h = 560 m
- (D) V1 = 3000 m/s e h = 600 m
- (E) V1 = 4000 m/s e h = 800 m

Uma importante característica de uma onda mecânica é a energia associada ao movimento do meio provocada por sua passagem. A densidade de energia E de uma onda é o total de energia calculada em uma unidade infinitesimal de volume no ponto de passagem. Considerando-se uma onda esférica e harmônica P com deslocamento radial, sua expressão em uma determinada posição r da origem é dada por $u = A\cos(\omega t + \phi)$, para os valores de A = 0,1 m, $\omega = 100$ rad/s e $\phi = \pi/3$ rad. Sabendo-se que a densidade do meio é de 2000 kg/m³, qual o valor da densidade volumétrica de energia em kJ/m³?

- (A) 25
- (B) 50
- (C) 100
- (D) 120
- (E) 200

54

Tendo em vista os princípios de propagação de ondas, considere as afirmativas abaixo.

- O Princípio de Huygens estabelece que cada ponto em uma frente de onda funciona como uma fonte de ondas secundárias (elementares), que compõe a frente de onda em uma nova posição ao longo da propagação.
- A difração é um fenômeno que ocorre com as ondas quando elas passam por um orifício ou contornam um objeto cuja dimensão é da mesma ordem de grandeza que o seu comprimento de onda.
- O Princípio de Fermat estabelece que a luz se propaga entre dois pontos, sem obstáculos, no menor tempo possível, sendo que no caso da sísmica, como consequência desse princípio, o caminho percorrido por uma onda em um meio heterogêneo é uma linha reta.
- O Princípio da Superposição estabelece que a combinação linear de diferentes entradas de um sistema linear e invariante no tempo é igual a essa combinação aplicada às saídas geradas pelas entradas originais separadamente, uma de cada vez, sendo que dessa forma o efeito de um conjunto de ondas sísmicas em meios elásticos pode ser analisado pela soma dos seus efeitos individuais.
- V O Princípio da Reciprocidade diz que a permuta das posições ocupadas pela fonte e pelo receptor altera a trajetória do raio, este princípio é válido somente em meios homogêneos.

São corretas APENAS as afirmativas

- (A) III e V, apenas.
- (B) I, II e IV, apenas.
- (C) II, III e IV, apenas.
- (D) I, II, III e IV, apenas.
- (E) I, II, III, IV e V.

55

Considere a curva definida por $y = 3x^2$ no intervalo [0, 10]. O ponto desta curva que mais se aproxima da reta y = 3x - 10 tem abscissa igual a

- (A) 0,5
- (B) 2,5
- (C) 2,8
- (D) 3,0
- (E) 3,5

56

Para o sistema de equações lineares AX = B, possível e determinado, fatora-se a matriz A usando a equação PA = LU, onde L e U são matrizes triangulares inferior e superior, respectivamente, e P uma matriz de permutação. Fazendo essa fatoração, a solução em X deste sistema pode ser escrita na forma

- (A) $X = (P^{-1}L)(UB)$
- (B) $X = (PB)(LU)^{-1}$
- (C) $X = (LU)^{-1}(PB)$
- (D) $X = (LU)(P^{-1}B)$
- (E) $X = (L^{-1}B^{-1})(UP)$

57

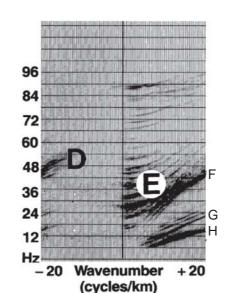
Os coeficientes da série de Fourier do sinal $x(t)=1+sen~\Omega_0t+cos(2\Omega_0t+\frac{\pi}{3})~s\~ao$

(A)
$$a_{-2} = \frac{e^{-i\pi/3}}{2}; a_{-1} = -\frac{i}{2}; a_0 = 1; a_1 = -\frac{i}{2}; a_2 = -\frac{e^{i\pi/3}}{2}$$

(B)
$$a_{-2} = \frac{e^{-i\pi/3}}{2}$$
; $a_{-1} = \frac{i}{2}$; $a_0 = 1$; $a_1 = -\frac{i}{2}$; $a_2 = \frac{e^{i\pi/3}}{2}$

(C)
$$a_{-2} = \frac{e^{-i\pi/3}}{2}$$
; $a_{-1} = -\frac{i}{2}$; $a_0 = 1$; $a_1 = \frac{i}{2}$; $a_2 = -\frac{e^{i\pi/3}}{2}$

(D)
$$a_{-2} = \frac{1}{2}$$
; $a_{-1} = -\frac{i}{2}$; $a_0 = 1$; $a_1 = \frac{i}{2}$; $a_2 = -\frac{1}{2}$


(E)
$$a_{-2} = \frac{1}{2}$$
; $a_{-1} = -\frac{i}{2}$; $a_0 = 0$; $a_1 = \frac{i}{2}$; $a_2 = -\frac{1}{2}$

Seja uma função complexa f(x + yi) = u(x, y) + v(x, y)i, onde u(x, y) = x + y e v(x, y) = 2x + 3, tal que $x \in [0, 1]$ e $y \in [1, 2]$. Qual a área da figura geométrica formada pela imagem desta função?

- (A) 4
- (B) 6
- (C) 10
- (D) 15
- (E) 24

59

Sismograma Tiro Comum

Transformada FK

YILMAZ, OZ, Seismic Data Analysis, Society Of Exploration Geophysicists, London, 2000.

Nas figuras acima, são mostrados um sismograma e a sua transformada FK. No sismograma, as três regiões, A, B e C, são marcadas por eventos com inclinações similares. Analise as afirmativas a seguir quanto à correlação entre os eventos da sísmica e as suas transformadas.

- As transformadas FK dos eventos A, B e C do sismograma são os eventos F, G e H, respectivamente.
- II O evento D mostra o falseamento (aliasing) em número de onda do evento F.
- III O evento E corresponde à transformada FK da onda direta e suas múltiplas.

É correto o que se afirma em

- (A) I, apenas.
- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.

60

A partir do soterramento, a matéria orgânica em rochas sedimentares sofre uma série de processos relacionados à geração de hidrocarbonetos, que podem ser divididos em diferentes estágios. A respeito desses processos, pode-se afirmar que

- a diagênese ocorre a temperaturas mais baixas e, em sua fase precoce, há a produção de metano biogênico devido à intensa atividade microbiana;
- II a catagênese é um estágio essencialmente termoquímico, quando o querogênio é craqueado em hidrocarbonetos, formando primeiramente óleo e posteriormente gás;
- III a janela de geração de gás ocorre a temperaturas menores que as da janela de geração de óleo;
- IV em relação à geração de óleo, os intervalos estratigráficos acima, dentro e abaixo da janela de geração do óleo são referidos, respectivamente, como imaturo, maturo e supermaturo;
- V no estágio metagênese, as rochas matrizes alcançam grau incipiente de maturidade.

São corretas APENAS as afirmativas

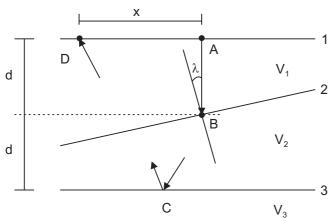
- (A) I, II e III.
- (B) I, II e IV.
- (C) I, IV e V.
- (D) II, III e V.
- (E) III, IV e V.

61

Um corpo de massa 1 kg realiza movimento harmônico simples, tal que a sua posição é descrita pela equação $x = 2\cos(\pi t - \pi/2)$ (SI). A energia cinética máxima desse corpo, em joules, é igual a

- (A) $2\pi^2$
- (B) π^{2}
- (C) 2π
- (D) 2
- (E) 0

Uma onda sísmica composta pela soma de duas ondas de frequências 25 Hz e 50 Hz, ambas com intensidade igual a 1, propaga-se por uma distância de 800 m. Sem se levar em consideração a divergência esférica, a perda, em dB, de cada uma das frequências, respectivamente, sabendo que o coeficiente de atenuação do meio é τ = 0.5 dB/ λ e a velocidade de propagação é 2000 m/s, é


Dados

Intensidade: $I = I_0 . e^{-\tau x}$

Perda em dB = 10° log (I_0/I_1) = 4,3 ln (I_0/I_1) , onde I_0 é a intensidade inicial e I, é o sinal atenuado.

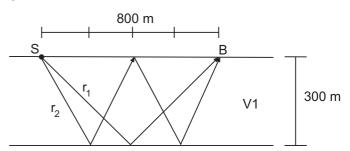
- (A) 21,5 e 40
- (B) 21,5 e 43
- (C) 21 e 43
- (D) 20 e 40
- (E) 10 e 20

63

Considerando-se a lei de Snell, qual a distância AD = x em função da distância d para o raio que percorre o caminho ABCD, mostrado na figura acima?

Dados do problema:

- o raio AB é perpendicular à superfície 1;
- o ângulo entre a normal da superfície 2 e o raio AB é igual a $\lambda=30^{\rm o};$ a velocidade do meio entre as superfícies 1 e 2 é igual a V₁=2000m/s; a velocidade do meio entre as superfícies 2 e 3 é V₂=2000.(3) $^{1/2}$ m/s; e a velocidade abaixo da superfície 3 é igual a V₃= 3800 m/s.
- (A) $\sqrt{3}$ d


(B) $\frac{\sqrt{3}}{4}$ d

(C) $\frac{4}{\sqrt{3}}$ d

(D) $\frac{2\sqrt{3}}{4}$ d

(E) $\frac{2}{3}$ d

64

O sinal originário do ponto S é expresso pela equação $S = cos(2000\pi t + d) + isen(2000\pi t + d)$, onde d é a distância percorrida e t o tempo. Os sinais associados aos raios r_1 e r_2 são aprisionados entre as interfaces paralelas percorrendo os diferentes caminhos mostrados na figura acima. Considere que não há efeitos dissipativos ou inversão de polaridade nas reflexões e que é desprezível o efeito da divergência esférica. Sabendo-se que a distância entre as interfaces paralelas é igual a 300 m e a distância $\overline{SB} = 800$ m, logo a expressão para o sinal resultante na posição B é

- (A) $e^{i2000\pi t} (e^{i500} + e^{i100\sqrt{13}})$
- (B) $e^{i2000\pi t} (e^{i1000} + e^{i400\sqrt{13}})$
- (C) $e^{i2000\pi t} (e^{i1000} + e^{i800})$
- (D) $e^{i2000\pi t} (e^{i(1000+400\sqrt{13})})$
- (E) $e^{i2000\pi t} (e^{i(1000-400\sqrt{13})})$

65

A aproximação da expressão $f(x) = \ell n(1+x)$, por um polinômio de Taylor de segundo grau em x = 0, é dada por

(A) $x - x^2$

(B) $x + \frac{x^2}{2}$

(C) $x - \frac{x^2}{2}$

(D) $\frac{x^2}{2}$

(E) $-\frac{x^2}{2}$

O cálculo da integral $\int \frac{tdt}{\sqrt{t+1}}$ resulta em

(A)
$$\frac{1}{3}\sqrt{(t+1)^3} - 2\sqrt{(t+1)} + C$$

(B)
$$\frac{2}{3}\sqrt{(t+1)^3}-2\sqrt{(t+1)}+C$$

(C)
$$\sqrt{(t+1)^3} + C$$

(D)
$$\frac{1}{3}\sqrt{(t+1)}+C$$

(E)
$$\frac{1}{3}\sqrt{(t+1)^3} + C$$

67

Um corpo de massa m desloca-se horizontalmente regido pela equação diferencial $m \frac{dv(t)}{dt} = kv(t)$, onde t é instante genérico,v(t) é sua velocidade escalar e k é uma constante. Se esse corpo em t = 0 movimentava-se com velocida-

de v₀, então v(t) será dado por (A) $v_0 e^{-\frac{\kappa}{m}t}$

(B)
$$kv_0e^{-\frac{m}{k}t}$$

(C) $v_0 e^{\frac{2m}{k}t}$

(D)
$$v_0 e^{\frac{\kappa}{m}}$$

(E) $v_0 e^{\frac{i\pi}{k}}$

68

transformada inversa de de $X(\Omega) = \pi \delta(\Omega + 3\pi) + \pi \delta(\Omega - 3\pi) - 2\pi \delta(\Omega + 7\pi) \text{ \'e}$

- (A) $\cos(3\pi t) e^{-j7\pi t}$
- (B) $\cos(3\pi t) \sin(7\pi t)$
- (C) $sen(3\pi t) e^{-j7\pi t}$
- (D) $sen(3\pi t) cos(7\pi t)$
- (E) $sen(3\pi t) \frac{e^{-j7\pi t}}{2}$

69

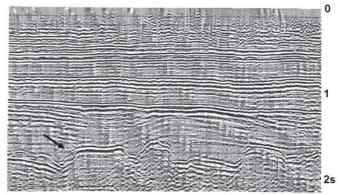


Figura 1

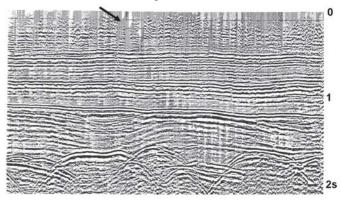
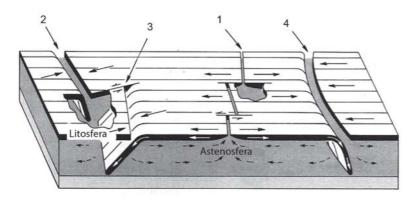


Figura 2

KEAREY, P., BROOKS, M., HILL, I, An Introduction to Geophysical Exploration, Third Edition, Blackwell Science

Sobre as seções sísmicas mostradas nas Figuras 1 e 2, pode-se afirmar:

- Interpretando-se a Figura 1, nota-se que o regime de sedimentação não varia com a profundidade, apesar das variações do refletor apontado pela seta indicarem o contrário. Tais variações, que podem ocasionar uma interpretação inicialmente errônea, são causadas por velocidades menores nas camadas acima dessas estruturas, provocando distorções
- II Comparando-se as Figuras 1 e 2, conclui-se que se realizou um processamento sísmico na seção da Figura 1 para se obter a seção da Figura 2.
- Na Figura 1, o processo de migração sísmica em tempo foi utilizado para colapsar as difrações que aparecem na seção da Figura 2.
- IV As descontinuidades dos dados mostrados no início da seção da Figura 2, exemplificadas pela seta, podem ser causadas pelo silenciamento dos maiores afastamentos, após a correção de NMO.


É(São) correta(s) **APENAS** a(s) afirmativa(s)

(A) II.

(B) I e II.

(C) III e IV.

- (D) I, III e IV.
- (E) II, III e IV.

DAVIS, G.H. & REYNOLDS, S.J. 1996. Structural Geology of Rocks and Regions (second edition). John Wiley & Sons.

Considerando-se a figura acima, qual a ordem correta dos diferentes limites (1, 2, 3 e 4) entre as placas litosféricas?

	1 2		3	4	
(A)	Tipo divergente, caracterizado por uma cordilheira mesoceânica.	Tipo convergente, caracterizado por um arco de ilhas vulcânicas.	Tipo transformante.	Tipo convergente, caracterizado por um arco magmático continental.	
(B)	Tipo divergente, caracterizado por uma cordilheira mesoceânica.	Tipo transcorrente.	Tipo convergente, caracterizado por um arco de ilhas vulcânicas.	Tipo convergente, caracterizado por um arco magmático continental.	
(C)	Tipo divergente, caracterizado por um arco magmático continental.	Tipo convergente, caracterizado por um arco de ilhas vulcânicas.	Tipo transformante.	Tipo convergente, caracterizado por uma cordilheira mesoceânica.	
(D)	Tipo distensivo, caracterizado por um arco magmático continental.	Tipo compressivo, caracterizado por uma cordilheira mesoceânica.	Tipo direcional.	Tipo compressivo, caracterizado por um arco de ilhas vulcânicas.	
(E)	Tipo distensivo, caracterizado por um arco de ilhas vulcânicas. Tipo compressivo, caracterizado por uma cordilheira mesoceânica.		Tipo transcorrente.	Tipo compressivo, caracterizado por um arco magmático continental.	

